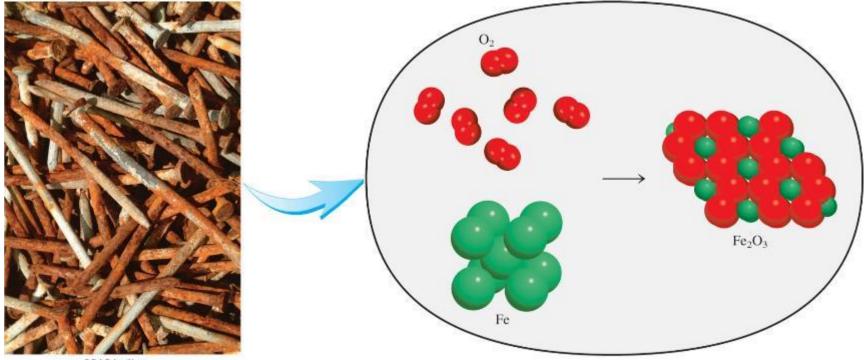

College Chemistry I

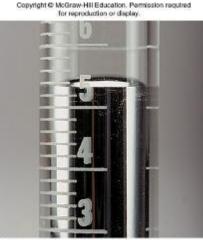

Dr. Glen Akridge

The Study of Chemistry

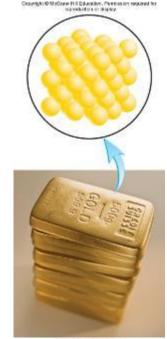
Macroscopic

Microscopic

Copyright @ McGraw-Hill Education. Permission required for reproduction or display.



Defining Chemistry


Chemistry is the study of matter and the changes it undergoes.

Matter is anything that occupies space and has mass.

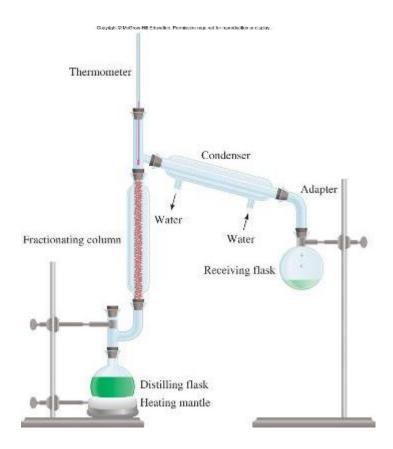
A *substance* is a form of matter that has a definite composition and distinct properties.

© McGraw-Hill Higher Education Inc./Stephen Frisch, Photographer

3

Mixtures

A *mixture* is a combination of two or more substances in which the substances retain their distinct identities.


- 1. *Homogenous mixture* composition of the mixture is the same throughout
- 2. *Heterogeneous mixture* composition is not uniform throughout

Mixtures (2)

Physical means can be used to separate a mixture into its pure components.

- B McGrav-Hill Higher Education Inc./Ken Karp, Pholographer

@ McGrew Hill Higher Education Inc.Ken Karp. Photographer

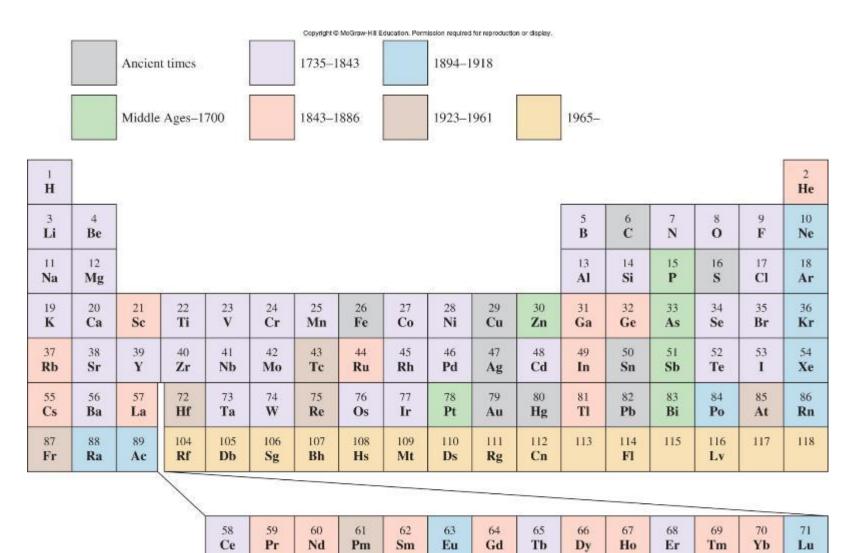
magnet

distillation

Elements

An *element* is a substance that cannot be separated into simpler substances by *chemical means*.

- 118 elements have been identified
- 82 elements occur naturally on Earth gold, aluminum, lead, oxygen, carbon, sulfur
- 36 elements have been created by scientists technetium, americium, seaborgium



Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Table 1.1 Some Common Elements and Their Symbols

Name	Symbol	Name	Symbol	Name	Symbol
Aluminum	Al	Fluorine	F	Oxygen	0
Arsenic	As	Gold	Au	Phosphorus	Р
Barium	Ba	Hydrogen	Н	Platinum	Pt
Bismuth	Bi	lodine	I.	Potassium	К
Bromine	Br	Iron	Fe	Silicon	Si
Calcium	Ca	Lead	Pb	Silver	Ag
Carbon	С	Magnesium	Mg	Sodium	Na
Chlorine	CI	Manganese	Mn	Sulfur	S
Chromium	Cr	Mercury	Hg	Tin	Sn
Cobalt	Со	Nickel	Ni	Tungsten	W
Copper	Cu	Nitrogen	Ν	Zinc	Zn

When the Elements Were Discovered

90

Th

91

Pa

92

U

93

Np

94

Pu

95

Am

96

Cm

97

Bk

98

Cf

99

Es

100

Fm

101

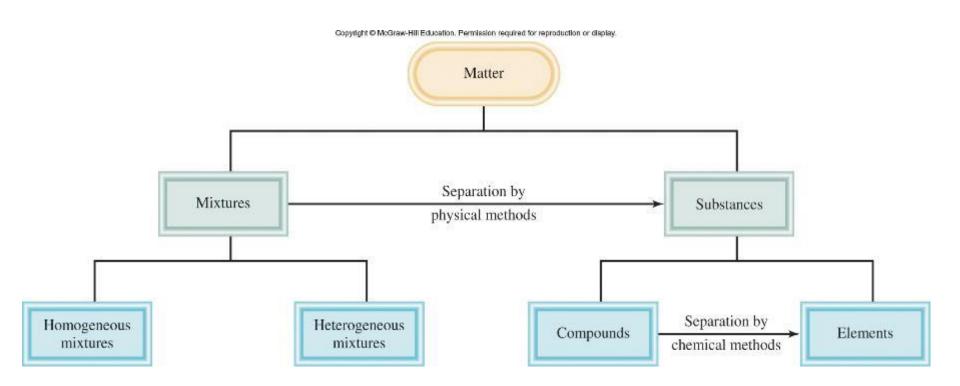
Md

102

No

c	
~	٤.
C)

103

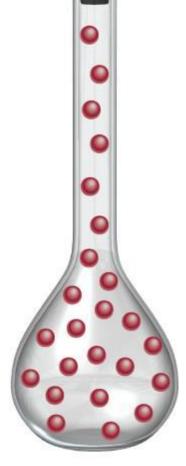

Lr

Compounds

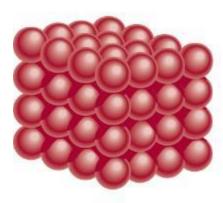
A *compound* is a substance composed of atoms of two or more elements chemically united in fixed proportions.

Compounds can only be separated into their pure components (elements) by *chemical* means.

Classifications of Matter



A Comparison: The Three States of Matter


Copyright @ McGraw-Hill Education. Permission required for reproduction or display.

Gas

Solid

International System of Units (SI)

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Table 1.2 SI Base Units

Base Quantity	Name of Unit	Symbol
Length	meter	m
Mass	kilogram	Kg
Time	second	S
Electrical current	ampere	А
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

In this class we will typically use: g, ml, L, K, °C

The Prefixes Used with SI Units								
	Prefix	Symbol	Meaning	Scientific Notation				
	exa- peta- tera- giga- mega- kilo- hecto- deka- deci- centi- milli- micro- nano- pico- femto- atto-	E P T G M k h da d c m μ n p f a	$\begin{array}{c} 1,000,000,000,000,000\\ 1,000,000,000,000\\ 1,000,000,000\\ 1,000,000\\ 1,000,000\\ 1,000\\ 100\\ 1$	$ \begin{array}{r} 10^{18} \\ 10^{15} \\ 10^{12} \\ 10^{9} \\ 10^{6} \\ 10^{3} \\ 10^{2} \\ 10^{1} \\ 10^{2} \\ 10^{-1} \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-6} \\ 10^{-9} \\ 10^{-12} \\ 10^{-15} \\ 10^{-18} \\ \end{array} $				

Scientific Notation:

Used to make very large or very small numbers more manageable.

The number of atoms in 12 g of carbon:

602,200,000,000,000,000,000,000 6.022×10^{23}

The mass of a single carbon atom in grams:

 $1.99 \times 10^{-23} \text{ g}$ N is a number n is a positive or negative integer

Scientific Notation (2) 568.762 0.0000077 \leftarrow move decimal left \rightarrow move n > 0 n 568.762 = 5.68762×10^2 0.00000772

0.00000772 \rightarrow move decimal right n < 00.00000772 = 7.72 × 10⁻⁶

Addition or Subtraction

- 1. Write each quantity with the same exponent *n*
- 2. Combine N_1 and N_2
- 3. The exponent, *n*, remains the same

 $4.31 \times 10^{4} + 3.9 \times 10^{3} =$ $4.31 \times 10^{4} + 0.39 \times 10^{4} =$ 4.70×10^{4}

Scientific Notation (3)

Multiplication

- 1. Multiply N_1 and N_2
- 2. Add exponents n_1 and n_2

$$(4.0 \times 10^{-5}) \times (7.0 \times 10^{3}) =$$
$$(4.0 \times 7.0) \times (10^{-5+3}) =$$
$$28 \times 10^{-2} =$$
$$2.8 \times 10^{-1}$$

<u>Division</u>

- 1. Divide N_1 and N_2
- 2. Subtract exponents n_1 and n_2

```
8.5 \times 10^{4} \div 5.0 \times 10^{9} =
(8.5 ÷ 5.0) × 10<sup>4-9</sup> =
1.7 × 10<sup>-5</sup>
```

Accuracy versus Precision

Accuracy – how close a measurement is to the true value

Precision - how close a set of measurements are to each other

Copyright @ McGraw-Hill Education. Permission required for reproduction or display. (a) (b) (c)

accurate & precise precise but not accurate not accurate & not precise Dimensional Analysis Method of Solving Problems

- 1. Determine which unit conversion factor(s) are needed
- 2. Carry units through calculation
- 3. If all units cancel except for the *desired unit(s)*, then the problem was solved correctly.

given quantity × conversion factor = desired quantity

given unit
$$\times \frac{\text{desired unit}}{\text{given unit}} = \text{desired unit}$$

Example

A person's average daily intake of glucose (a form of sugar) is 0.0833 pound (lb). What is this mass in milligrams (mg)? (1 lb = 453.6 g.)

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

© Leonard Lessin/Science Source