College Chemistry I

Dr. Glen Akridge

The Study of Chemistry

Macroscopic
Microscopic

Copyight D McGraw -HII Education. Pemmasion required for reproduction or dapisy.

Defining Chemistry

Chemistry is the study of matter and the changes it undergoes.

Matter is anything that occupies space and has mass.
A substance is a form of matter that has a definite composition and distinct properties.

Mixtures

A mixture is a combination of two or more substances in which the substances retain their distinct identities.

1. Homogenous mixture - composition of the mixture is the same throughout
2. Heterogeneous mixture composition is not uniform throughout
iron filings
in sand

Mixtures (2)

Physical means can be used to separate a mixture into its pure components.

magnet

Elements

An element is a substance that cannot be separated into simpler substances by chemical means.

- 118 elements have been identified
- 82 elements occur naturally on Earth gold, aluminum, lead, oxygen, carbon, sulfur
- 36 elements have been created by scientists technetium, americium, seaborgium

Elements (2)

Table 1.1 Some Common Elements and Their Symbols

Name	Symbol	Name	Symbol	Name	Symbol
Aluminum	Al	Fluorine	F	Oxygen	O
Arsenic	As	Gold	Au	Phosphorus	P
Barium	Ba	Hydrogen	H	Platinum	Pt
Bismuth	Bi	lodine	I	Potassium	K
Bromine	Br	Iron	Fe	Silicon	Si
Calcium	Ca	Lead	Pb	Silver	Ag
Carbon	C	Magnesium	Mg	Sodium	Na
Chlorine	Cl	Manganese	Mn	Sulfur	S
Chromium	Cr	Mercury	Hg	Tin	Sn
Cobalt	Co	Nickel	Ni	Tungsten	W
Copper	Cu	Nitrogen	N	Zinc	Zn

When the Elements Were Discovered

\square Ancient times
 1894-1918
\square Middle Ages-1700 \square 1843-1886

1965-

$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \text { Pr } \end{aligned}$	$\begin{gathered} 60 \\ \text { Nd } \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \end{gathered}$	$\begin{gathered} 62 \\ \mathrm{Sm} \end{gathered}$	$\begin{aligned} & 63 \\ & \text { Eu } \end{aligned}$	$\begin{gathered} 64 \\ \text { Gd } \end{gathered}$	$\begin{aligned} & 65 \\ & \mathbf{T b} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{gathered} 67 \\ \mathbf{H o} \end{gathered}$	$\begin{aligned} & 68 \\ & \mathbf{E r} \end{aligned}$	$\begin{gathered} 69 \\ \mathrm{Tm} \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \end{gathered}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Compounds

A compound is a substance composed of atoms of two or more elements chemically united in fixed proportions.

Compounds can only be separated into their pure components (elements) by chemical means.

Classifications of Matter

A Comparison: The Three States of Matter

International System of Units (SI)

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Table 1.2 SI Base Units

Base Quantity	Name of Unit	Symbol
Length	meter	m
Mass	kilogram	Kg
Time	second	s
Electrical current	ampere	A
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

In this class we will typically use:

$$
\mathrm{g}, \mathrm{ml}, \mathrm{~L}, \mathrm{~K},{ }^{\circ} \mathrm{C}
$$

The Prefixes Used with SI Units

Prefix Symbol Meaning

exa-	E	$1,000,000,000,000,000,000$	10^{18}
peta-	P	$1,000,000,000,000,000$	10^{15}
tera-	T	$1,000,000,000,000$	10^{12}
giga-	G	$1,000,000,000$	10^{9}
mega-	M	$1,000,000$	10^{6}
kilo-	k	1,000	10^{3}
hecto-	h	100	10^{2}
deka-	da	10	10^{1}
-	-	1	10^{0}
deci-	d	0.1	10^{-1}
centi-	c	0.01	10^{-2}
milli-	m	0.001	10^{-3}
micro-	μ	0.000001	10^{-6}
nano-	n	0.000000001	10^{-9}
pico-	p	0.000000000001	10^{-12}
femto-	f	0.000000000000001	10^{-15}
atto-	a	0.000000000000000001	10^{-18}

Scientific Notation:

Used to make very large or very small numbers more manageable.
The number of atoms in 12 g of carbon:

$$
\begin{gathered}
602,200,000,000,000,000,000,000 \\
6.022 \times 10^{23}
\end{gathered}
$$

The mass of a single carbon atom in grams:
0.0000000000000000000000199

$$
1.99 \times 10^{-23} \mathrm{~g}
$$

N is a number between 1 and 10
n is a positive or negative integer

Scientific Notation (2)

568.762
\leftarrow move decimal left
$n>0$
$568.762=5.68762 \times 10^{2}$

Addition or Subtraction

1. Write each quantity with the same exponent n
2. Combine N_{1} and N_{2}
3. The exponent, n, remains the same
0.00000772
\rightarrow move decimal right

$$
n<0
$$

$$
0.00000772=7.72 \times 10^{-6}
$$

$$
\begin{array}{r}
4.31 \times 10^{4}+3.9 \times 10^{3}= \\
4.31 \times 10^{4}+0.39 \times 10^{4}= \\
4.70 \times 10^{4}
\end{array}
$$

Scientific Notation (3)

Multiplication

1. Multiply N_{1} and N_{2}
2. Add exponents n_{1} and n_{2}

$$
\begin{array}{r}
\left(4.0 \times 10^{-5}\right) \times\left(7.0 \times 10^{3}\right)= \\
(4.0 \times 7.0) \times\left(10^{-5+3}\right)= \\
28 \times 10^{-2}= \\
2.8 \times 10^{-1}
\end{array}
$$

Division

1. Divide N_{1} and N_{2}
2. Subtract exponents n_{1} and n_{2}

$$
\begin{gathered}
8.5 \times 10^{4} \div 5.0 \times 10^{9}= \\
(8.5 \div 5.0) \times 10^{4-9}= \\
1.7 \times 10^{-5}
\end{gathered}
$$

Accuracy versus Precision

Accuracy - how close a measurement is to the true value Precision - how close a set of measurements are to each other

Dimensional Analysis Method of Solving Problems

1. Determine which unit conversion factor(s) are needed
2. Carry units through calculation
3. If all units cancel except for the desired unit(s), then the problem was solved correctly.
given quantity \times conversion factor $=$ desired quantity

$$
\text { given unit } \times \frac{\text { desired unit }}{\text { given unit }}=\text { desired unit }
$$

Example

A person's average daily intake of glucose (a form of sugar) is 0.0833 pound (lb). What is this mass in milligrams (mg)? ($1 \mathrm{lb}=453.6 \mathrm{~g}$.)

Copyright (c) McGraw-Hill Education. Permission required for reproduction or display.

© Leonard Lessin/Science Source

