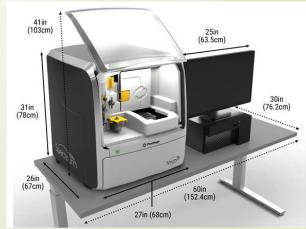
Biomolecular Analysis

Archeological Chemistry Seminar 2023 AAS/ARAS Training Program

What is biomolecular analysis?

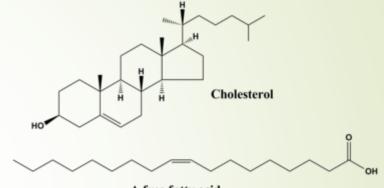
- Study of ancient molecules related to understand human biological and cultural evolution
 - Lipids (fats)
 - Carbohydrates
 - Proteins and amino acids
 - DNA

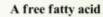
- Typical topics studied through biomolecular analysis
 - Organic residues on pottery/stone
 - Organic residues in soil (activity areas)
 - Amino acid analysis for food identification and dating
 - Genetic studies of plant and animal domestication
 - DNA relationships between groups/individuals

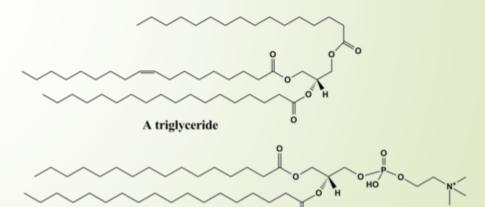


Techniques used in biomolecular analysis

- Lipids and Carbohydrates
 - Gas Chromatography-Mass Spectrometry (<u>GCMS</u>)
 - Liquid Chromatography-LCMS
- Proteins

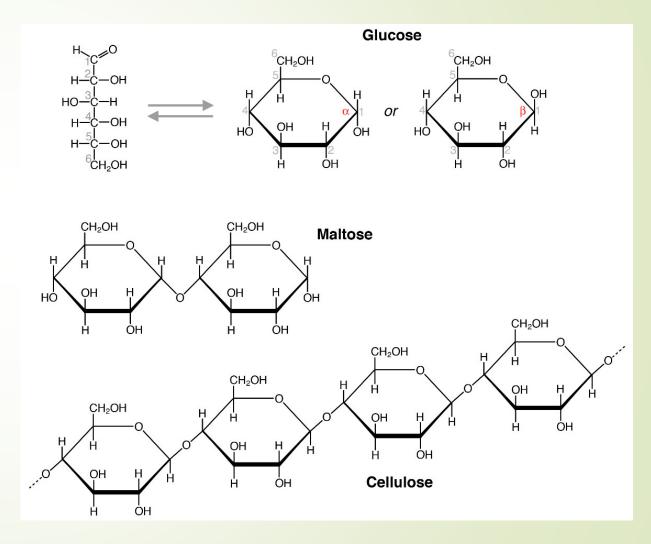

- Immunoassay
- Electrophoresis
- Isoelectric focusing
- Nucleic Acids (DNA and RNA)
 - Polymerase Chain Reaction (PCR)
 - Capillary Electrophoresis (CE) –
 - Genetic Analyzer

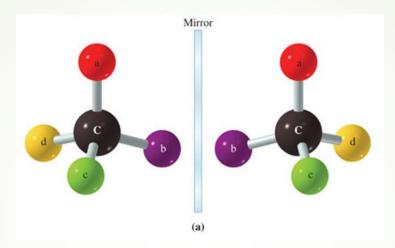




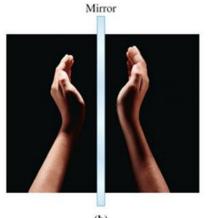
Lipids

- Lipids include:
 - Fats
 - Waxes
 - Sterols
 - Fat soluble vitamins
 - Glycerides
 - Phospholipids
- Mostly carbon-hydrogen bonds
- Mostly non-polar molecules
 - Do not dissolve in water

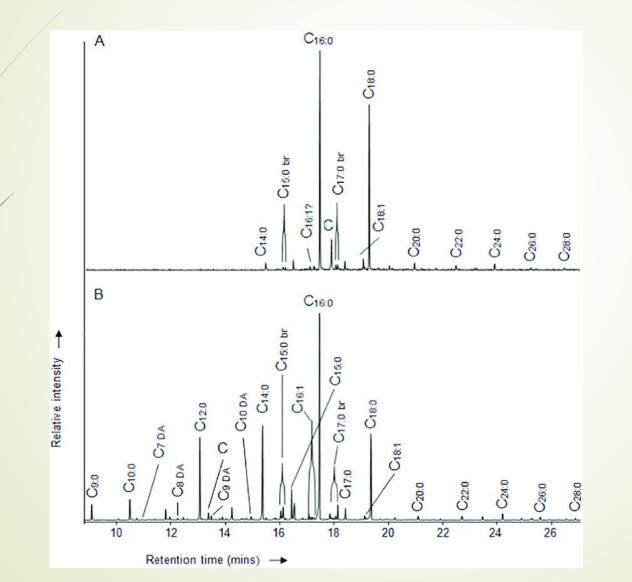



A phospholipid

Carbohydrates


- Carbohydrates include:
 - Sugars
 - Saccharides
 - Starch
 - Cellulose
- Form ring structures
 - Linked by oxygen bonds
 - Can be left handed (L) or right handed (D)
 - Organisms use right handed sugars
- Biochemical functions:
 - Provide energy
 - Structural stability
 - Part of DNA/RNA structure

Enantiomers



Nonsuperimposable mirror images: Enantiomers

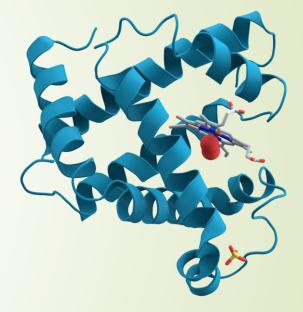
Organic Residue Analysis

7

Partial GC-MS chromatograms with the major fatty acid components (ion m/z 74) detected in two pottery samples from Scania, S. Sweden (LB16 (A) and SHM11 (B)). The fatty acid distributions are most likely indicative of a degraded animal fat (A) and a plant oil (B) component.

Fatty Acid Characteristics of Selected Mammals

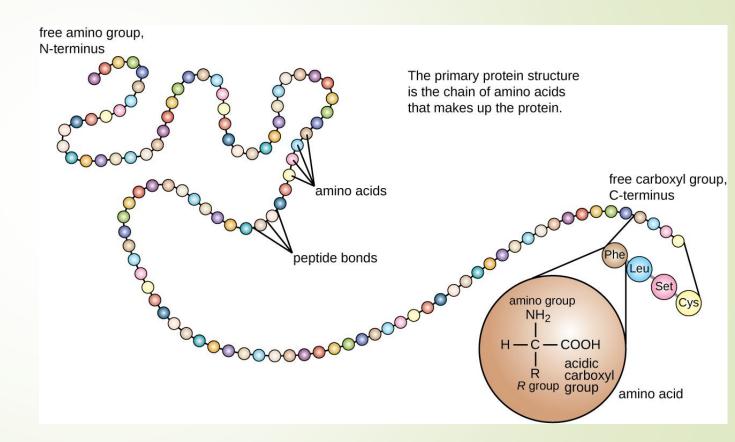
Parameter	Mouse	Rat	Guinea pig	Dog	Pig	Cow	Horse	$p < \text{value}^\ddagger$
n^{\dagger}	6	8	6	4	7	7	5	
16:0	22.5 ± 1.7	23.9 ± 1.4	15.5 ± 2.4	14.4 ± 0.7	17.9 ± 2.0	10.4 ± 1.3	8.9 ± 0.7	.0001
16:1 <i>n</i> -7	2.5 ± 0.8	3.6 ± 0.8	1.2 ± 0.2	2.5 ± 0.4	1.2 ± 0.2	0.8 ± 0.1	2.8 ± 0.9	.0001
18:0	15.5 ± 1.8	11.8 ± 1.4	26.8 ± 0.4	19.1 ± 0.8	11.8 ± 1.6	13.8 ± 2.8	14.1 ± 0.9	.0001
18:1 <i>n</i> -9	18.3 ± 1.7	18.9 ± 2.4	11.9 ± 0.7	15.5 ± 1.4	32.6 ± 4.7	26.2 ± 2.2	18.4 ± 2.1	.0001
18:2n-6	14.6 ± 1.4	18.4 ± 1.8	33.5 ± 2.7	25.1 ± 1.2	22.1 ± 2.2	32.9 ± 1.7	53.1 ± 3.1	.0001
18:3n-3	0.3 ± 0.03	0.2 ± 0.1	0.9 ± 0.4	0.4 ± 0.3	2.6 ± 0.5	0.1 ± 0.01	0.1 ± 0.1	.0001
20:3n-6	2.4 ± 0.7	0.2 ± 0.1	0.5 ± 0.08	1.5 ± 0.3	0.9 ± 0.2	2.4 ± 0.5	0.3 ± 0.1	.0001
20:4n-6	13.1 ± 1.1	14.1 ± 1.2	8.1 ± 0.9	20.6 ± 0.9	10.2 ± 1.1	12.3 ± 1.4	1.8 ± 0.5	.0001
22:6n-3	10.6 ± 0.7	8.6 ± 0.8	1.5 ± 0.2	0.7 ± 0.3	0.5 ± 0.3	0.7 ± 0.2	0.3 ± 0.1	.0001


*Values are means \pm SD.

 $^{\dagger}n$ = number of different animals in each species.

[‡]The significant differences among all species for a particular fatty acid are indicated, through a one-way analysis of variance.

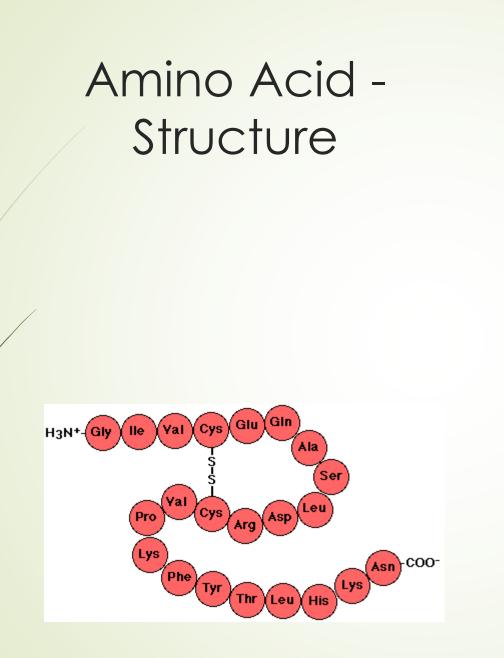
Proteins


- Are large macromolecules
 - Comprised of amino acids
 - Form end-to-end (i.e. chain structure)
 - From 30-27,000 amino acids
 - Shorter chains called polypeptides
 - Individual amino acids are peptides
- Biochemical functions:
 - Catalyzing metabolic reactions
 - Assist in DNA replication
 - Provide structural stability
 - Assist in molecule transport

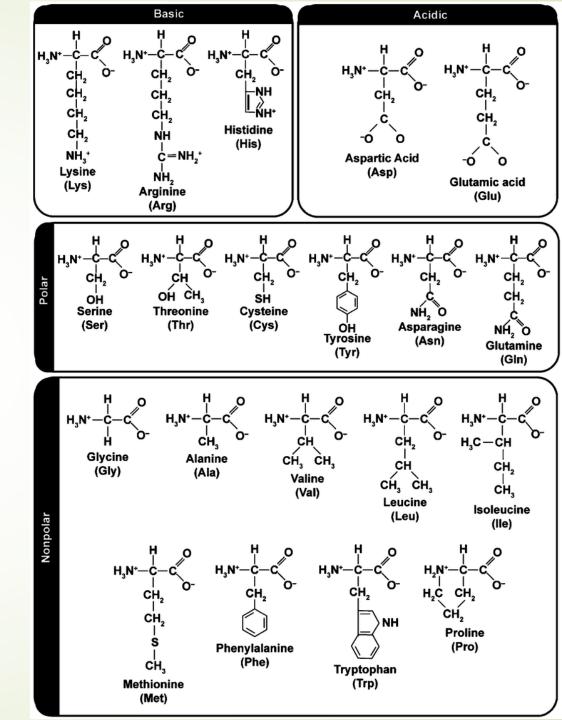
Myoglobin (153 amino acids)

Amino Acids

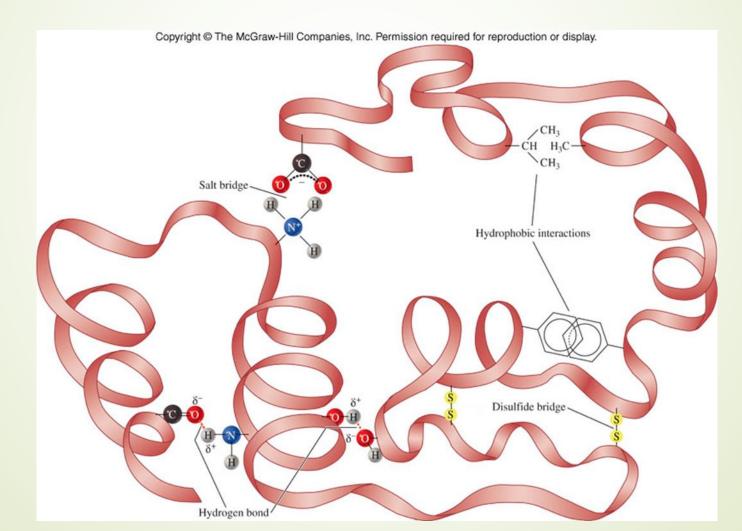
- Organisms generally contain 20 different types of amino acids
 - Some organisms have a few more
- Linked together they create a chain structure that can bend around in distinctive shapes
 - There can be interactions between amino acids in different parts of the chain
 - Protein function depends on the overall shape of the protein
 - "Denaturing" causes the chain to unravel by using acids, bases, or heat
 - Cooking partially denatures proteins



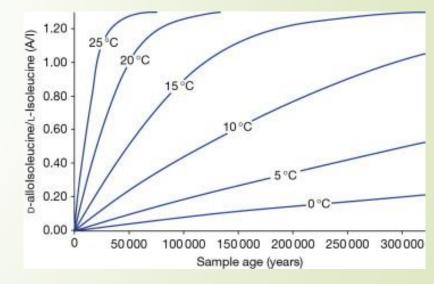
11


Amino Acids – Names and Abbreviations

Amino acids in living organisms are all left handed (L) structures


Amino Acid	Three-Letter Abbreviation	One-Letter Abbreviation		
Alanine	ala	A		
Arginine	arg	R		
Asparagine	asn	N		
Aspartate	asp	D		
Cysteine	cys	С		
Glutamate	glu	E		
Glutamine	gln	Q		
Glycine	gly	G		
Histidine	his	Н		
Isoleucine	ile	1		
Leucine	leu	L		
Lysine	lys	К		
Methionine	met	M		
Phenylalanine	phe	F		
Proline	pro	Р		
Serine	ser	S		
Threonine	thr	Т		
Tryptophan	trp	W		
Tyrosine	tyr	Υ		
Valine	val	V		

Cross-linking dictates structure



More Cross-linking Interactions

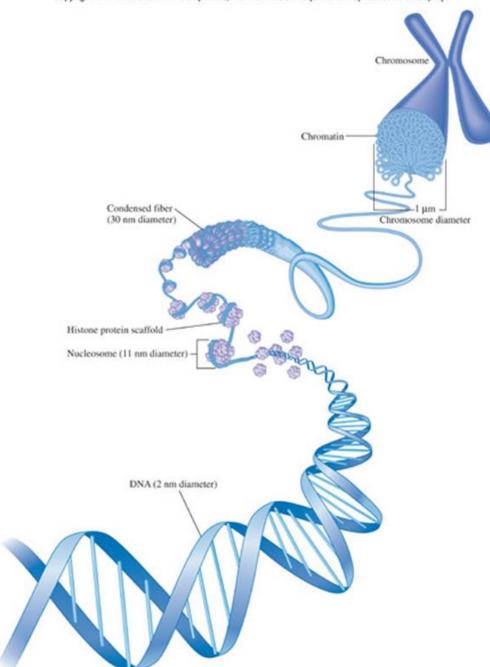
Amino Acid Racemization Dating

- Technique developed in the 1960s using fossil shell
 - Later extended to bone
- Uses slow conversion rate of left handed (L) amino acids into right handed (D)
 - Eventually, amino acids handedness would be 50:50 between L and D
 - Normally, it is difficult to analyze handedness (they must be separated first)
 - One amino acid is easily separated
 - L-isoleucine \rightarrow D-alloisoleucine
 - Conversion rate is temperature dependent, higher temps = faster conversion
 - Researchers studied L-isoleucine between 100°C to 150°C
 - Extrapolated conversion rate to deep sea temps 2-4°C
 - Other researchers have applied it to bone (e.g. Arizona)
- Still considered controversial

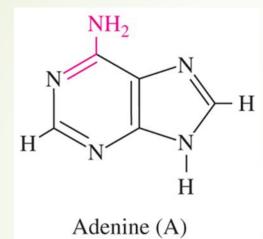
Deoxyribonucleic Acid (DNA)

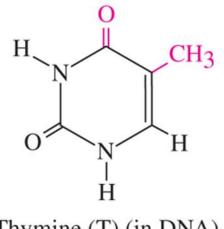
Archaeogenetics –

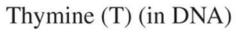
- The study of ancient DNA using various molecular genetics methods and DNA resources
- Ancient population group migrations
- Domestication events
- Plant and animal evolution
- FYI, the oldest DNA ever sequenced came from?
 - 2 million year old mammoth found in Greenland

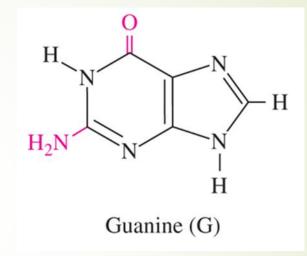

DNA Facts

- All organisms on Earth share the same four DNA nucleotides
 - Physical differences in organisms are the result of their nucleotide sequence
- In humans, the nucleotide sequence is about 3.2 billion nucleotides long
 - Divided into 46 long chains, called chromosomes
 - Chromosomes are paired, thus 23 pairs of chromosomes
 - 23 chromosomes are derived from the mother, 23 chromosomes are derived from the father
 - Genes are shorter parts of the chromosomes

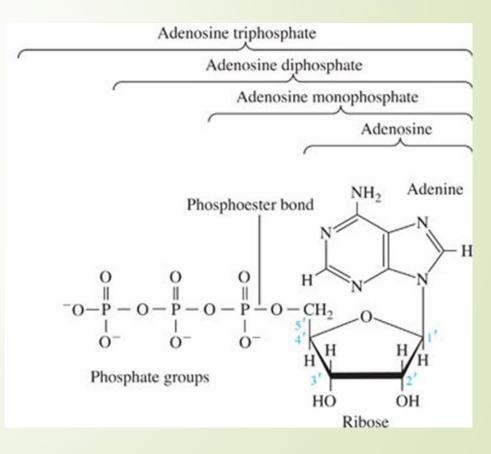

Chromosome Structure

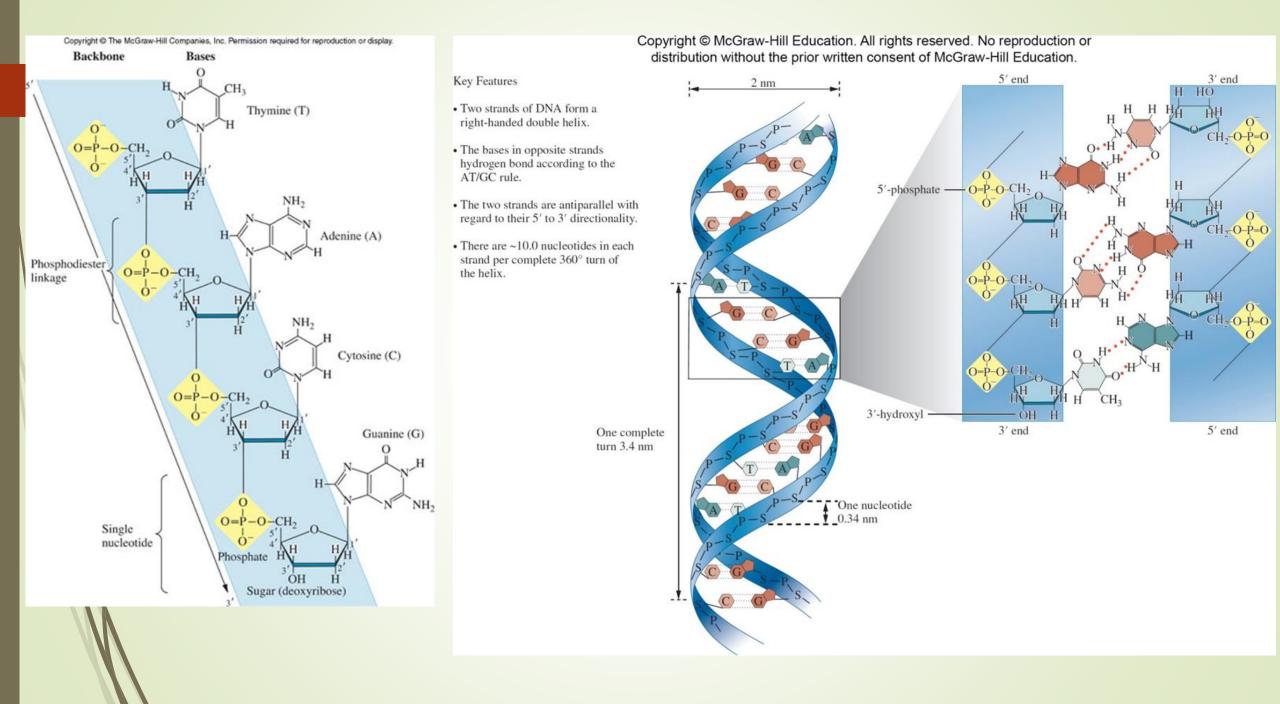

- Chromosomes are made of a tight bundle of DNA strands
 - The strands are paired together in a double helix structure
 - The strands are held together by chemical bonds between the nucleotide bases





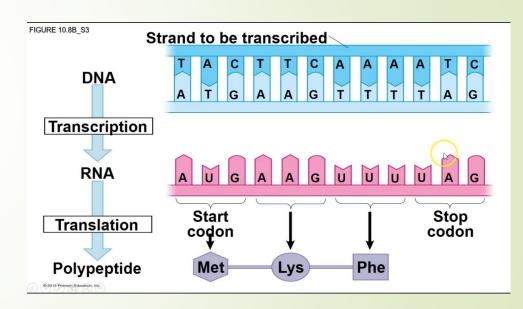
DNA Nucleotide Bases





A Single Nucleotide

- A single nucleotide is made of three parts:
 - Base (in this case adenine)
 - Sugar (ribose)
 - Phosphate groups



Information Flow in Biological Systems

 Central Dogma – inside cells there is a one-way street to the flow of information

DNA -----> RNA -----> Proteins

- Transcription the process by which a single strand of DNA serves as a template for the synthesis of an RNA molecule
 - Essentially it is making a copy
- Translation converts from the sequence of nitrogenous bases to another sequence of amino acids
 - Essentially translating one language into another
 - Protein synthesis

DNA Replication

- DNA of parents is replicated and handed down to offspring
- The replication process is not perfect
 - Occasionally, a different nucleotide replaces the intended nucleotide
- This new DNA sequence is handed down through many generations before another change occurs
- This allows certain traits, common to a particular group or tribe, to be followed in the DNA over time
 - Reveals when mobility when those unusual DNA sequences show up in unusual places

Sequencing DNA

Ancient DNA degrades over time

- Often fragments into smaller pieces
- Often difficult to put the pieces back in the right places
- There are many different techniques for sequencing
 - Full genome Sequencing by synthesis (uses DNA Polymerase)
 - Short sequences high throughput methods

DNA Sequencing Changed the Game The World's Oldest DNA Looking for Londoners

24

Image References

page

3

6

8 9

2 https://historicengland.org.uk/images-books/publications/organic-residue-analysis-and-archaeology/heag058a-organic-residue-analysis-and-archaeology-guidance/

4 https://en.wikipedia.org/wiki/Lipid

- 5 https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/exploring-carbohydrates-in-the-pdb-archive
- 7 Journal of Archaeological Science: Reports 24(1):142-151
 - By →AzaToth self made based on PDB entry, Public Domain, https://commons.wikimedia.org/w/index.php?curid=68596
- 14 https://www.sciencedirect.com/topics/earth-and-planetary-sciences/racemization
- 15 https://newhumanist.org.uk/articles/5335/what-ancient-dna-says-about-us
- 16 https://youtu.be/FOZEMN49vhA
- 17
- 18 19