Elemental Analysis

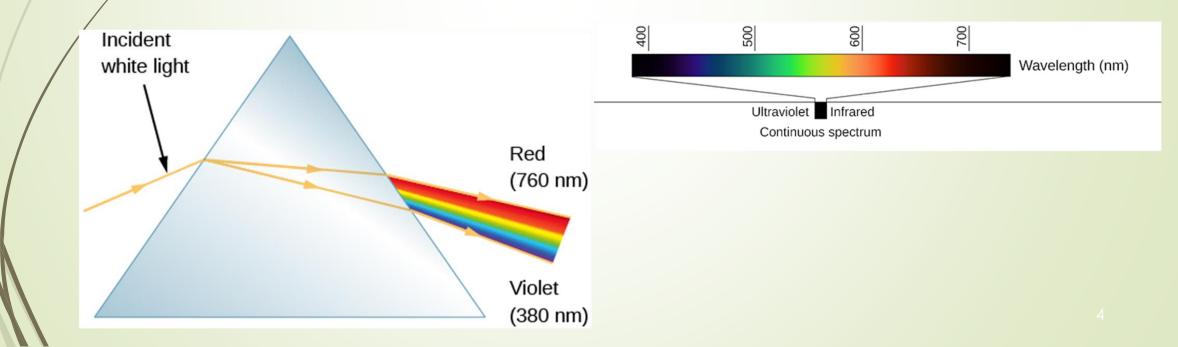
Archeological Chemistry Seminar 2023 AAS/ARAS Training Program

Techniques of Elemental Analysis

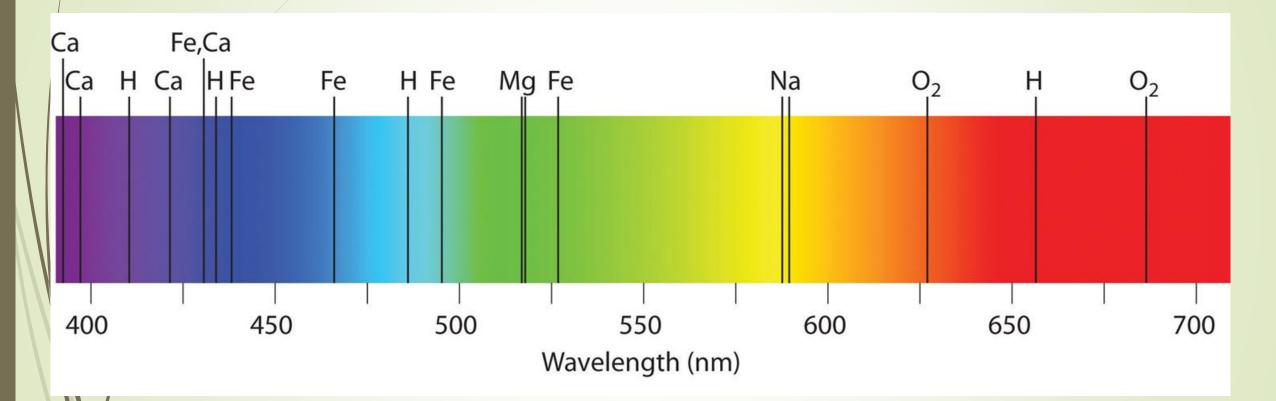
Wet Chemical techniques

- Atomic Absorption Spectrophotometry (AAS)
- Optical Emission Spectroscopy (OES)
- Inductively Coupled Plasma (ICP)
- X-Ray Fluorescence (XRF)
- Laser Induced Breakdown Spectroscopy (LIBS)
- Neutron Activation Analysis (NAA)

Wet Chemical techniques


- Usually involve isolating each element using a series of chemical reactions.
- Mostly used pre-1950
- Qualitative tests

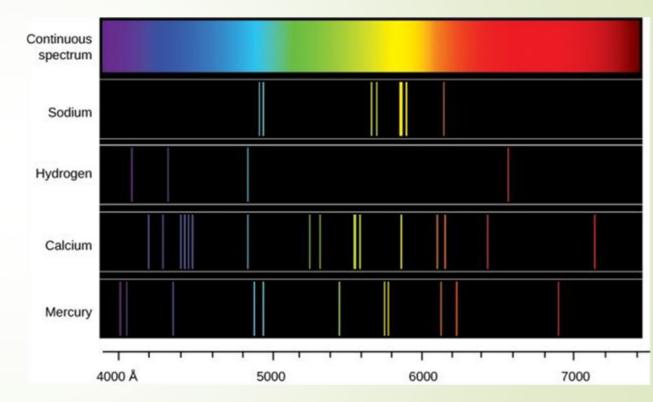
- Chemical tests indicating a color change, precipitant, etc...
 - Example: Cation Group Separation (i.e. Group I = Ag, Pb, Hg; Group IV = Ba, Sr, Ca)
- Flame tests indicate the presence of metals by flame color
 - Example: Ca flame = orange; copper = blue
- Quantitative tests
 - Gravimetric Analysis
 - Measures the mass of a precipitant that has formed
 - Volumetric Analysis
 - Measures concentration of a dissolved substance

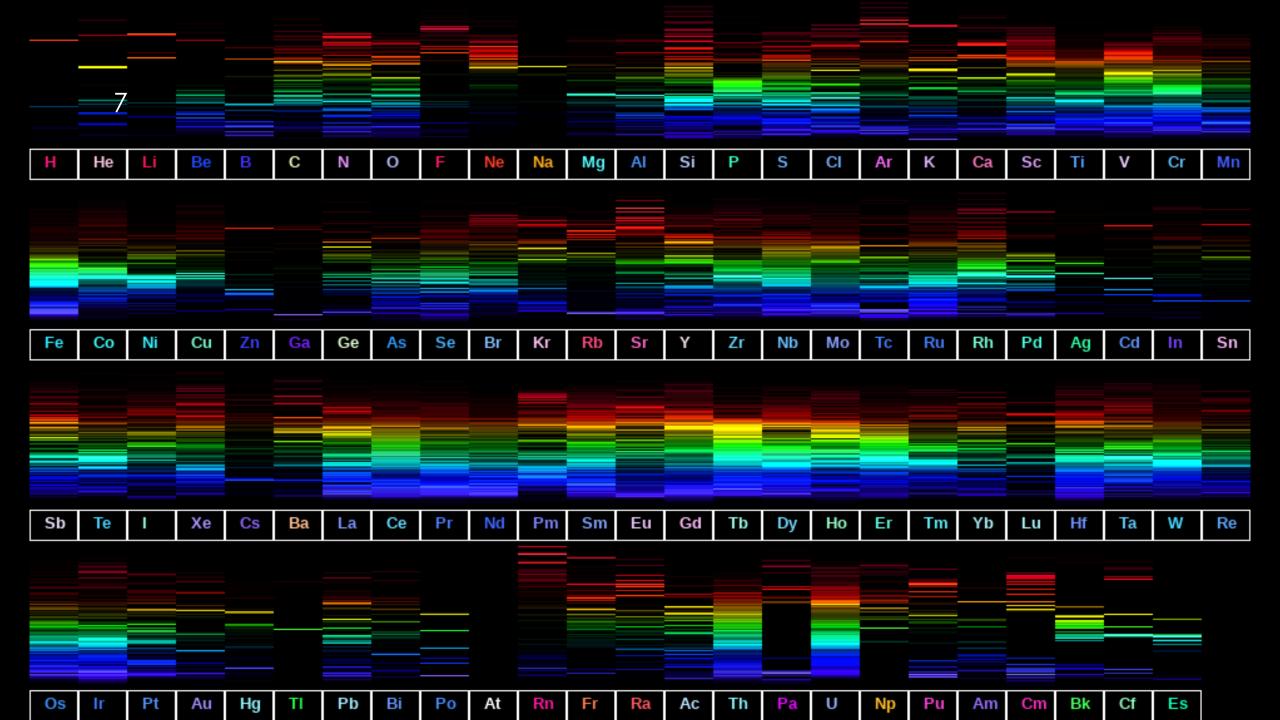


Properties of Light

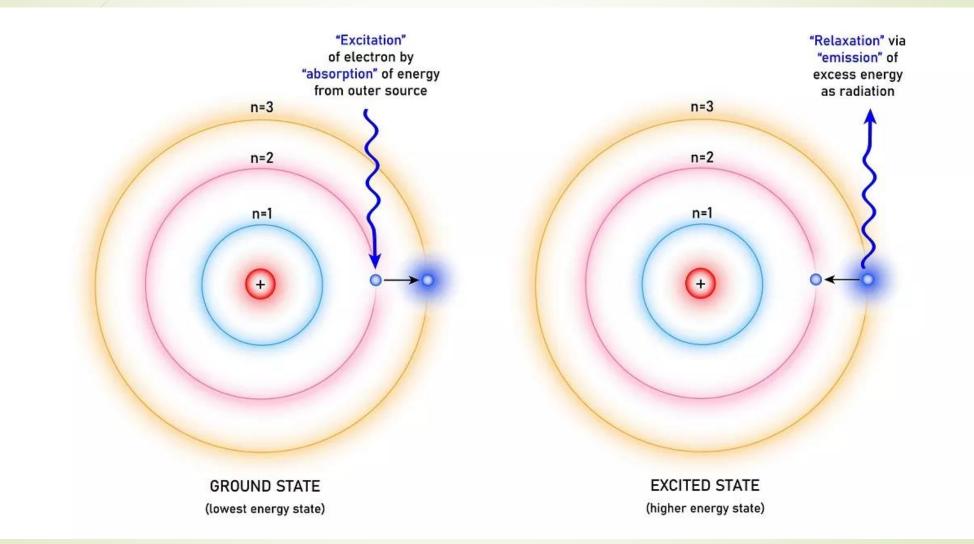
- Reflection when light bounces off an object
- Refraction bending of light as it passes through an object
- Isaac Newton (1670) used a prism to break sunlight into a rainbow of colors
- The separated light is called a spectrum

Sunlight Spectrum



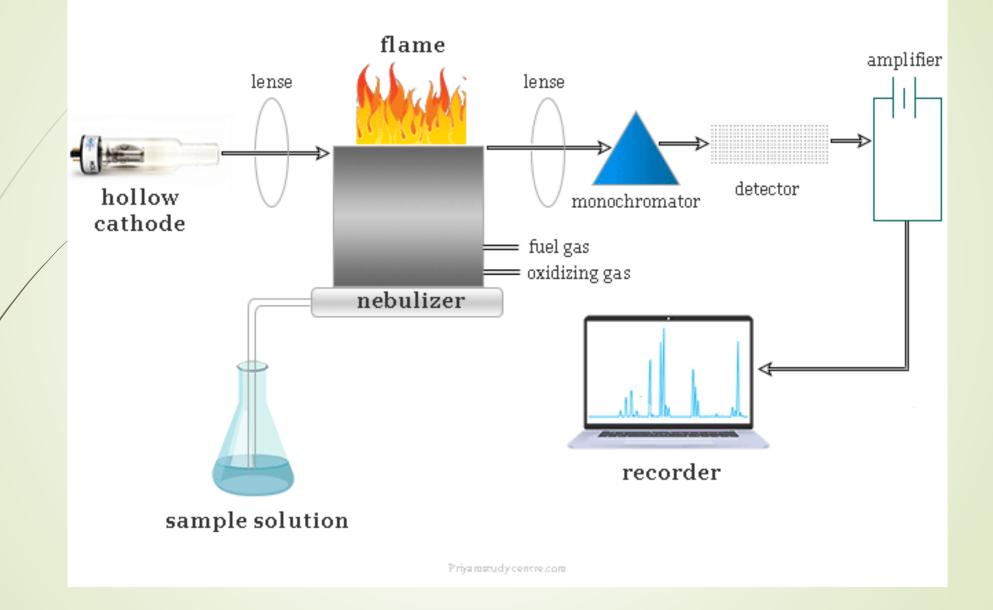

Spectral lines are the result of light absorption in the Sun's cooler photosphere.

6 Chemical Fingerprints


 Absorption lines and emission lines are indicative of chemical elements

Each element has its own unique set of lines

Excitation and De-Excitation of the Electron

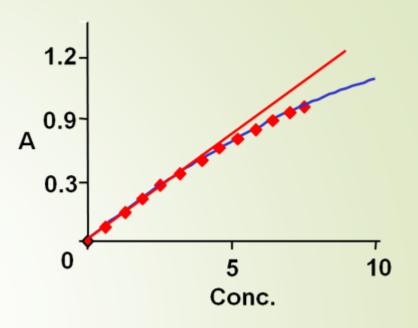


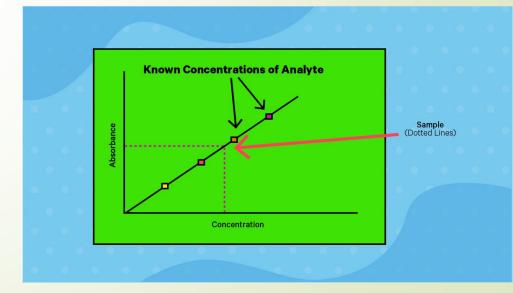
Atomic Absorption Spectrometry (AAS)

- Developed in 1950s
- Comes in two forms:
 - Flame atomizer
 - Graphite furnace
- Samples must be dissolved into a solution and then aspirated into the flame/furnace
- Flame/furnace temperature:
 - ► 2200-3000°C

Atomic absorption spectroscopy

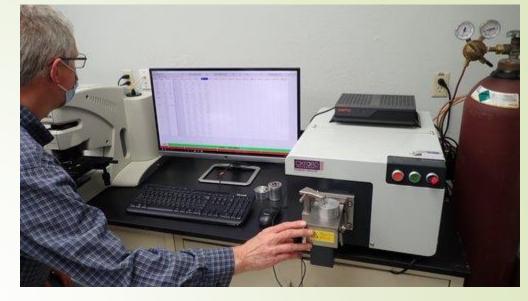
AAS Principles

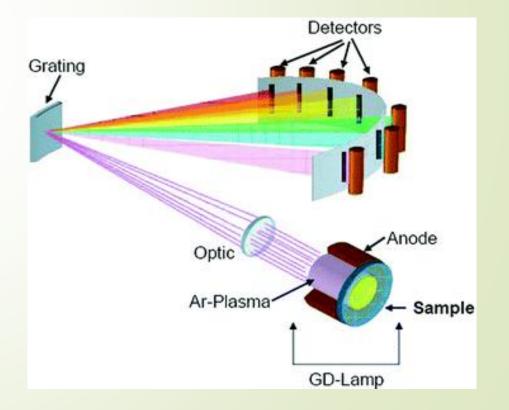

- A hollow-cathode Lamp (HCL) must be selected to match the element of interest
- Excitation of the tube produces emission lines only for that element
- Flame/furnace atomizes the sample
- If element is present, it will absorb the wavelength emitted by the HCL
- Decrease in signal is proportional to its concentration in the vapor



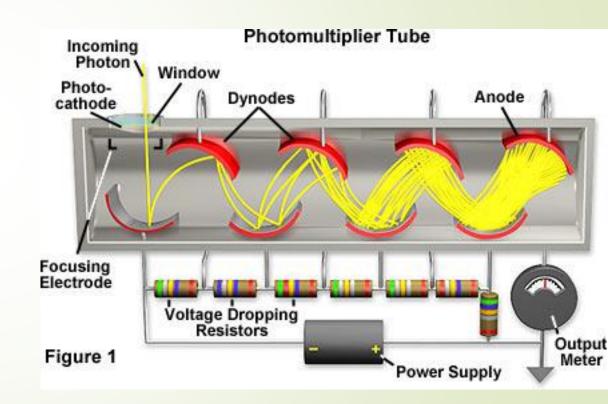
Hollow-cathode lamps for analysis of Sr and Ba

- As for most all techniques, comparison of a sample's signal to that of standards is required.
 - Ideally, samples are measured in the linear region of the standards.
- Can measure most metals
- Suffers from:

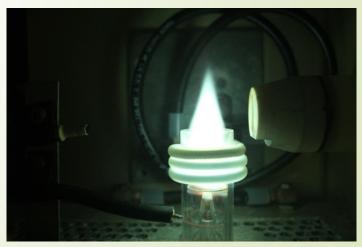

- calibration drift
- reproducibility
- Detection limits are typically between 1-100 ppm (mg/kg)

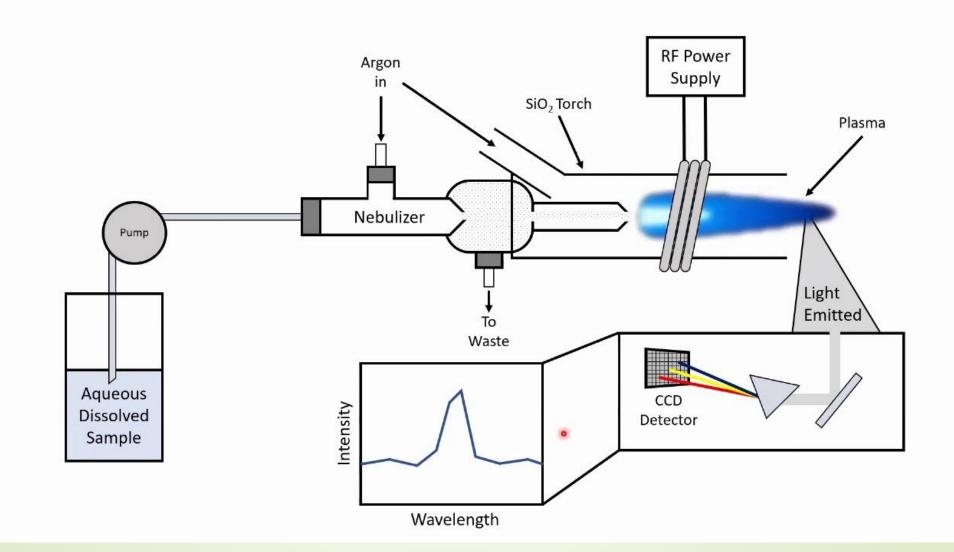


Optical Emission Spectroscopy (OES)


- Standard method of analysis for archeological materials from 1950-1980
 - Pottery, obsidian, faience, and metals
- Samples are volatilized by an electric spark
 - Causes sample to atomize and emit light
- Light spectrum is focused onto a diffraction grating
 - Grating separates wavelengths (colors)
 - Each wavelength is measured separately by photomultiplier tubes
- Disadvantages:
 - Reproducibility is a challenge
 - Originally used photographic film

Photomultiplier Tubes


- Used to dramatically increase weak signals in analytical instruments
- Incoming photon (signal) passes through a window and strikes a metal surface
- An electron is ejected and accelerated toward another positively charged plate
- Upon striking metal plate, multiple electrons are ejected and again accelerated toward another plate
- The repeated process exponentially increases electrical signal


Inductively Coupled Plasma (ICP)

- Popular, modern technique for elemental analysis
- Similar to atomic absorption technique operated in emission mode
- Samples are injected into a stream of argon gas
- Argon is heated to 8000-10,000°C by alternating radio-frequency field carried by copper coils.
- Ionized elements oscillate in the RF field, frictional heating raises temps to final state
- Samples can be analyzed by ICP-OES upon deexcitation
- Samples can be analyzed by ICP-MS due to their charged nature
- Superb detection limits

Inductively Couple Plasma

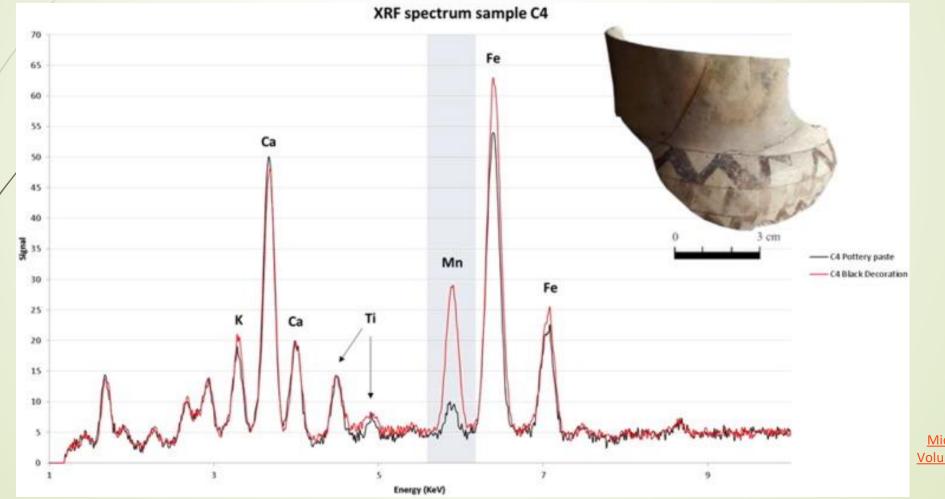
Elements Measureable by ICP-MS

neliu-n

hydrogen

1	Elements medsareasie sy ter mis										2						
H											He						
1.00/9		\sim									4.9026						
lithium 3	berytllum 4										10						
	Be								1 - 10	ppt (ng	g/L)	B	Ċ	Ň	Ŏ	F	Ne
LI									10 1	<u> </u>	(-	_	
6.941	9.01.22								10-1	00 ppt	(ng/L)	10.811	12.011	14.907	15.999	15.998	20180
sodium 11	nagnesium 12								0.1-	l ppb (µ	a/I)	aluminium 13	silicon 14	phosphorus 15	sulfor 16	ch orine 17	argon 18
									0.1-	· hhn (h	9/L/						
Na	Mg								1 - 10	ppb (µg	a/L)		Si	P	S	CI	Ar
22,990	24,305								_		9, -,	26,982	28,966	30.974	32 065	35,453	39,948
polassium 19	ra rium	scandium	ularium 22	vanad om	chromium An	manganese 25	100 26	cobali 27	nickel 28	сорры 29	2006 30	gallium 31	germanium	arsenir Do	selenium 34	hrom ne DE	kryalan 36
	20	21		23	24							_	32	33	_	35	
K	Ca	Sc		V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.978	47.956	47,867	50.942	51,996	54.938	55.845	58.953	58.693	63.546	65.38	69.723	/2.64	71.922	78.96	79,904	83.795
rubidium	strontium	yttrium	zirconium	n obium	ma ybdenum	technetium	rutherrium	rhadium	oal ad 'u m	si ver	cadmium	indium	tin	antimeny	tellurium	iocine	xendo
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	I Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.468	87.62	88,906	91,224	92,906	95,96	.981	101.07	102.91	106.42	107.57	112.41	114.82	115.71	121.76	127.50	126.90	31.29
caesium	barium		hafriu n	lanta um	tungston	thenium	osmium	iridium	olatinum	gold	mercury	thatlium	lead	bismuch	polori'um	astatine	obe
55	56		72	73	74	75	76	77	78	79	80	81	62	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
137.91	137,33		178,49	180.95	18.3.84	185,21	190.23	197.22	195.68	196.97	200,59	204.38	207.2	208.S8	209)	[210]	[272]
francium	radium		rutherfordum	cubrium	sezbargium	bohnum	hassium	meltherium	darmstadtium	roentgen um							
87	88		104	105	106	107	108	109	110	111							
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
223]	[226]		261	[262]	265	[264]	[277]	268	[2/1]	272							

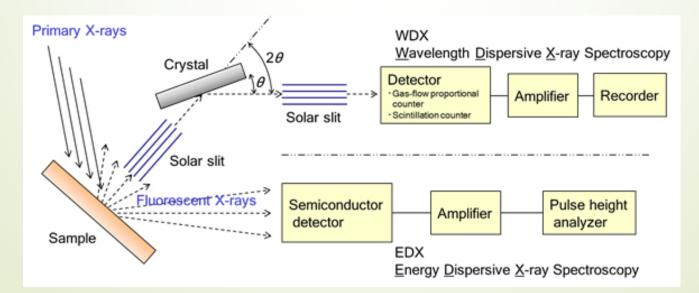
- [lanthanum	redum	praseodymlum	neodymium	promethium	samarium	europlum	gadelinium	terblum	dysprostum	holmtum	erblum	thulium	ytterblum	lutetium
	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	138.91	140.12	140.91	141.24	[1/15]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	1/4.97
- F	actinium	all and some				1.1.1			1 1 1	112 1					
	acciniur	thorium	protactinium	uraniu m	reptunium	plutonium	americium	curium	berkel 'u **	californ'u≃	einsteinium	term'um	mendelevium	nobelium	lawrencium
	89	90	91	uranium 92	93	piutonium 94	95	ourium 96	97	sairen u∾ 98	einsteinium 99	term um 100	101	nobelium 102	103
					· ·										


X-Ray Fluorescence (XRF)

- XRF is the emission of secondary x-rays from a material that has been excited by bombardment of primary, high-energy x-rays
- Common tool for rapid elemental analysis
 - Used for metals, ceramics, glass, and building materials
 - Geochemistry, forensic science, metallurgy, archeology, and art objects
- Measures composition of surface layer only (0.1-2 mm)
 - Bulk analysis requires homogenization of sample
- Inner shell electrons absorb primary x-ray and is excited to higher energy levels
 - De-excitation gives off characteristic secondary x-rays indicative of element

XRF of Pottery

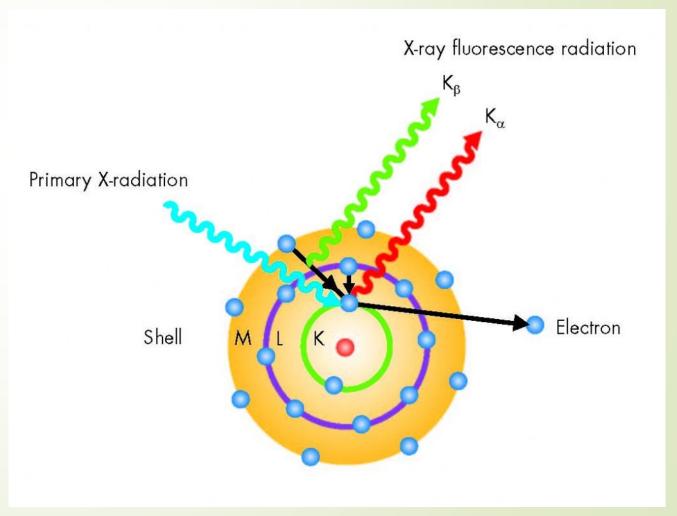
XRF Lab – Field Museum


Analysis of Serra d'Alto figuline pottery (Matera, Italy):

Microchemical Journal Volume 137, March 2018, Pages 174-180

XRF Types

- XRF analysis can be performed two ways:
 - Wavelength Dispersive XRF
 - Secondary x-rays sorted by wavelength
 - Energy Dispersive XRF
 - Secondary x-rays sorted by energy

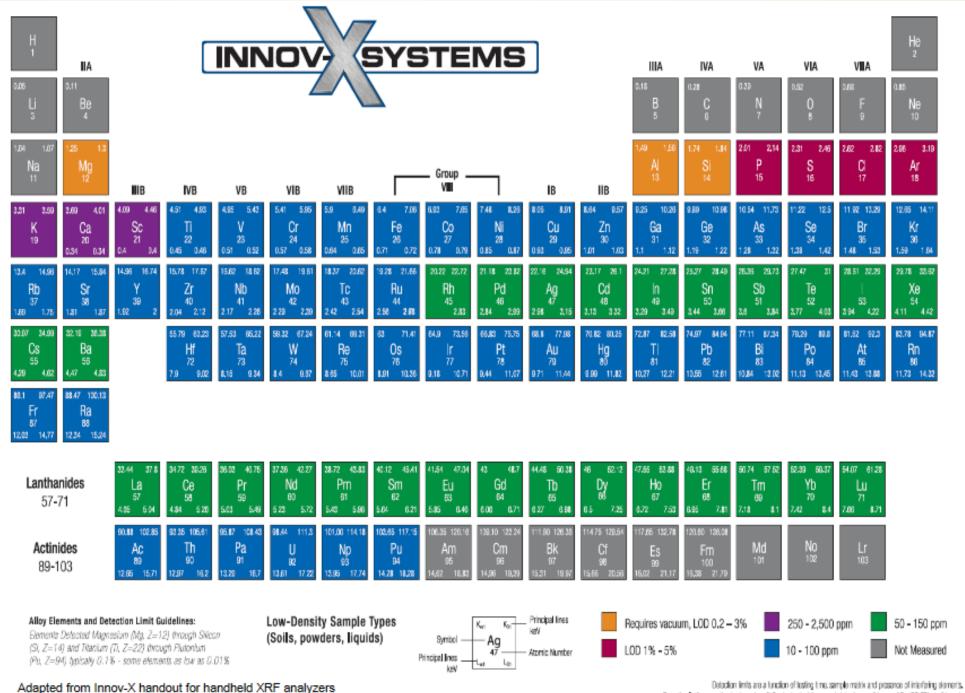


21

Where do the Secondary X-rays come from?

- Incoming primary x-rays are generated by bombarding certain metals (W or Mo) with electrons
- Primary x-rays will be either scattered or absorbed
- Absorbed x-rays eject innershell electrons from the atom
 - Atom replaces ejected electron with outer shell electrons

Laboratory (XRF) and Portable XRF (pXRF) Analyzers

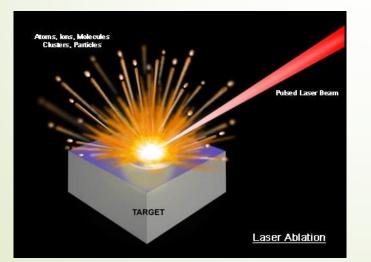


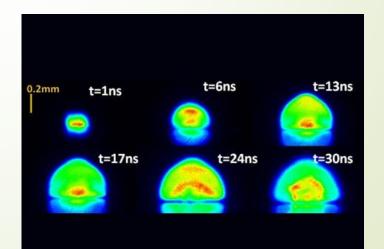
XRF and pXRF Considerations

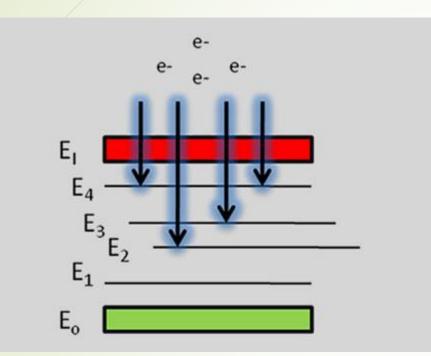
- Convenient for use with solid samples (surface analysis only)
- Sensitive to matrix composition
 - Requires experienced operator
- WDXRF (0.1 wt%) has better limits of detection than EDXRF (0.2-1 wt%) for the major light elements
 - Na, Mg, Al, Si....
- For trace elements, limits of detection are comparable (3-20 ppm)
 - Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Pb, Th, and U
- pXRF should be considered as semi-quantitative without careful sample prep and matrix correction
- Lots of bad data being published based on pXRF
 - "decades of protocol developed for laboratory XRF analysis is completely ignored" Shackley 2010

24

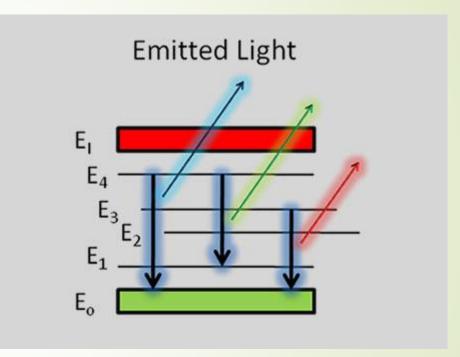
XRF Elements & Approximate Detection Limits



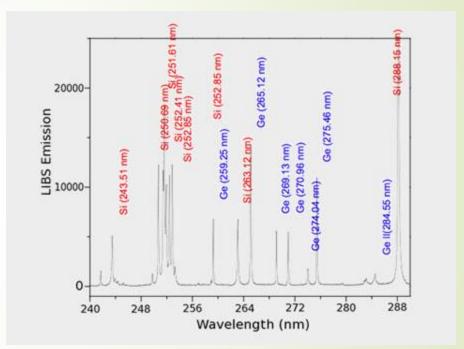

Note similar reference tables available from other XRF vendors


Detection limits are a function of leading time, sample matrix and presence of interforing elements. Detection limits are estimates based on 1-2 minutes test times and detection confidence of 3ct(99,7% confidence). Interference-free detection limits are intended as guidelines please contact inno-X Systems to discuss your specific application.

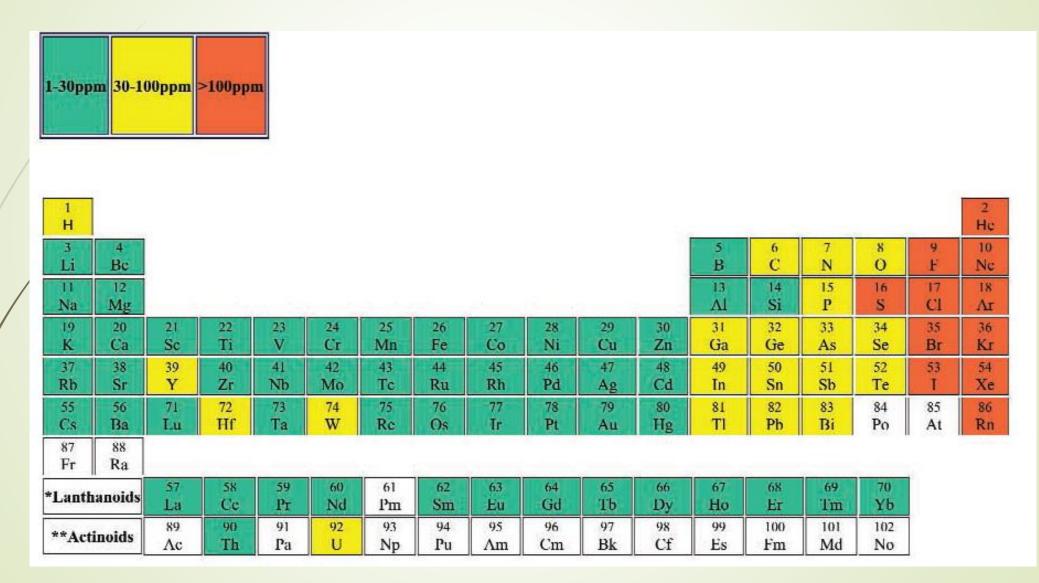
Laser Induced Breakdown Spectroscopy


- A rapid chemical analysis technique that uses a short laser pulse to create a micro-plasma on the sample surface
- Focused laser pulse (10 ns) can vaporize surface spots (<1mm²) to temperatures greater than 30,000°C
- Cooling plasma allows excited electrons to fall to lower energy levels, giving off characteristic wavelengths of light.

Emission of continuum light during early stage (< 200 ~ 300 nsec) of plasma cooling process.



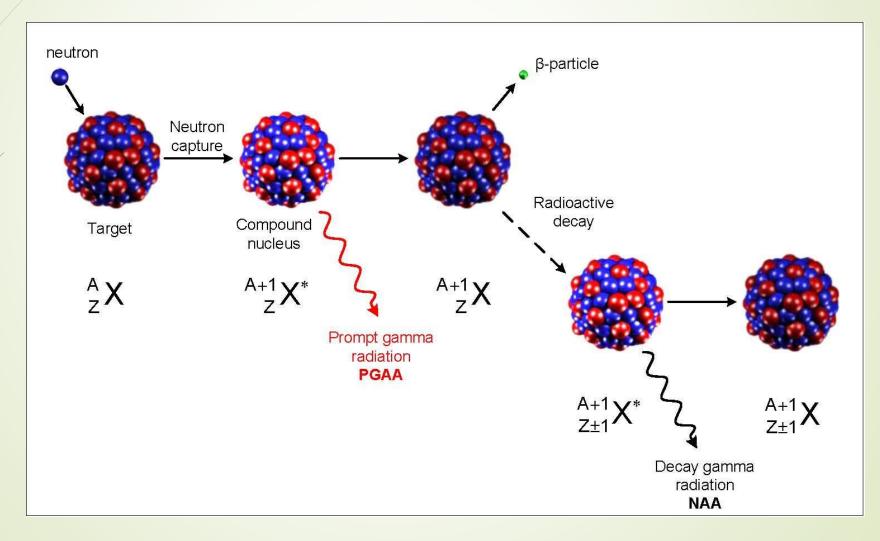
Emission of discrete atomic lines at later times (> 1μ sec).



Emitted light collection by a set of optical lens and optical fiber.

Display of LIBS spectra and their subsequent analysis by the instrument software for both qualitative and quantitative elemental analysis

LIBS Detection Limits

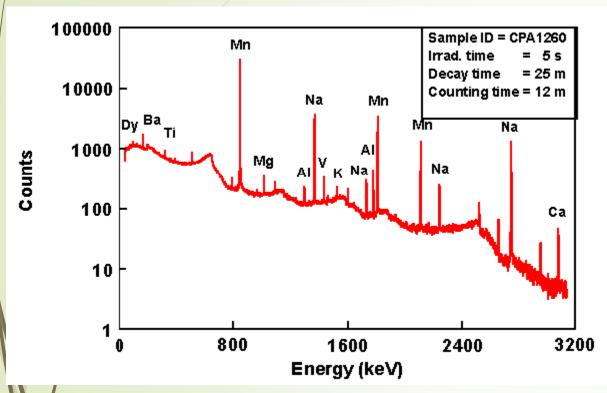


Neutron Activation Analysis (NAA)

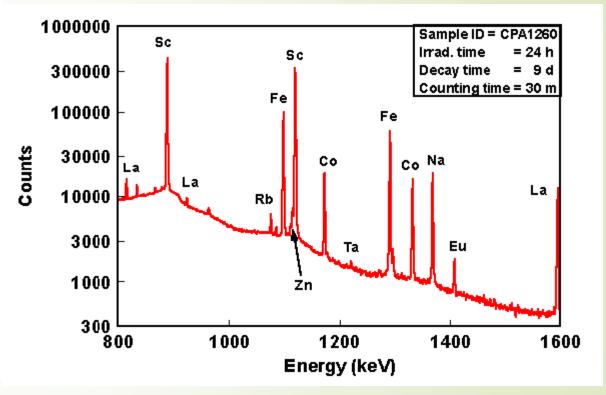
- Samples are irradiated by neutrons
 - Three ways: nuclear reactor, accelerator, nuclide source
- Elements capture neutrons and become radioactive
 - Radioactive elements then emit beta particles and gamma rays
- Gamma ray energies are unique to each element and measured by gamma ray detector
 - Advantages are:
 - Up to 70 elements can be measured simultaneously
 - Extremely low detection limits, ppt to ppb
 - Highly precise (reproducible)
 - Only requires milligrams of sample

Inside the Nuclear Reactor (Also includes accelerators)

Inside the Nuclear Reactor – II (Also includes accelerators)


- Samples (e.g. soil, pottery) are ground to a fine powder
 - Placed in polyethylene or quartz tubes
 - Tubes placed in spinning wheel to irradiate all samples equally
 - Neutron flux must have energies of approximately 0.04 MeV
 - Moderators (wax, water, heavy water) can be used to slow neutrons
 - Neutrons lose energy through collisions until they reach thermal equilibrium
 - "Thermal Neutrons"
 - Samples capture neutrons in their nucleus and become neutron-rich
 - And also radioactive
- After samples are removed from neutron source, they remain radioactive for weeks
 - Measured by scintillation detectors (e.g. Nal)

Measurement of the Radioactivity



33

NAA Results from MURR

Gamma-ray spectrum showing several short-lived elements measured in a sample of pottery irradiated for 5 seconds, decayed for 25 minutes, and counted for 12 minutes with an HPGe detector.

Gamma-ray spectrum from 800 to 1600 keV showing medium- and long-lived elements measured in a sample of pottery irradiated for 24 hours, decayed for 9 days, and counted for 30 minutes on a HPGe dectector.

Which technique is better?

- There is no one 'best' technique.
- The most appropriate technique depends on:
 - Availability of technique
 - Accuracy and precision considerations
 - Physical state of sample to be analyzed (solid, liquid, gas)
 - Matrix of sample (soil, pottery, pigment, etc...), interfering elements
 - Detection limit(s)
 - Destructive vs. non-destructive analysis
 - Cost of analysis

Comparison of Techniques

Technique	Strengths	Limitations	Applications	System	
Flame AAS – Flame Atomic	Very easy-to-use	Low sensitivity	Ideal for laboratories analyzing	AA-7000F	
Absorption Spectroscopy	Widely accepted	Sequential analysis	many samples for up to six		
	Reference method in many	Use of flammable gas	elements and for the determi-		
	fields		nation of concentrations in		
	Wide application range		ppm level		
GFAAS – Graphite Furnace	Inexpensive	Limited analytical working	Ideal for laboratories analyzing	AA-7000G + GFA-7000	
Atomic Absorption	Low detection limits	range	many samples for up to six ele-		
Spectroscopy	Wide application range	Sample throughput limited	ments at low detection limits		
	Unatteneded operation	in comparison to flame AAS	with typical concentrations in		
		or ICP-OES	ppb level		
ICP-OES – Inductively	Fast analytical speed	Higher initial investment	Ideal for laboratories doing	ICPE-9000	
Coupled Plasma Optical	Simultaneous multi-element		multi-element analysis on		
Emission Spectroscopy	analysis		a large number of samples in		
	Highest sample throughput		ppm to ppb level		
	Widest analytical range				
	Good documentation				
	Wide application range				
	Unatteneded operation				
	Qualitative and quantitative				
	analysis				
ED-XRF – Energy Dispersive	Easy-to-use	Lower precision at low	Ideal for laboratories doing	EDX-720P/800P	
X-ray Fluorescence Spectro-	Non destructive analysis	concentration levels	fast analysis in the upper ppm		
scopy	Fast screening		to % level with no sample		
	No need for sample pretreat-		preparation		
	ment				

Image References

slide #

https://commons.wikimedia.org/wiki/File:FlammenAAS.jpg

By Suman6395 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=41240068

4 Astronomy textbook printed by OpenStax 5 Astronomy textbook printed by OpenStax 6 Astronomy textbook printed by OpenStax 7 http://umop.net/spectra/ 8 https://www.wondriumdaily.com/the-concept-of-energy-levels-and-the-aufbau-order/ 9 https://www.azom.com/article.aspx?ArticleID=18556 10 https://www.priyamstudycentre.com/2021/11/atomic-absorption-spectroscopy.html 11 https://store.shimadzu.com/p-45904-lamp-hollow-cathode-sr-ba.aspx

12 https://www.scimed.co.uk/education/what-is-atomic-absorption-spectroscopy-aas/ 13 https://www.metengr.com/testing-services/chemical-analysis/optical-emission-oes

14 https://www.olympus-lifescience.com/en/microscope-resource/primer/digitalimaging/concepts/photomultipliers/

15 https://www.mrl.ucsb.edu/tempo-facility/instruments/inductively-coupled-plasma 16 https://www.youtube.com/watch?v=InFhIHPZYIc 17 https://cais.uga.edu/facilities/plasma-chemistry-laboratory/guide-selecting-the-most-suitable-technique/ 18 19 https://www.sciencedirect.com/science/article/abs/pii/S0026265X17308834 20 https://www.spectro.com/products/xrf-spectrometer/xepos-xrf-spectrometer 21 https://www.thermofisher.com/order/catalog/product/XL2 23 https://www.technologynetworks.com/analysis/articles/atomic-absorption-spectroscopy-principles-and-applications-356829

By Wblanchard - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27531915

https://www.toray-research.co.jp/en/technicaldata/techniques/XRF.html

24https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_%28Analytical_Chemistry%29/Analytical_Sciences_Digital_Library/Courseware/Introduction_to_XRF-_An_Analytical_Perspective/2._Interpretation_of_XRF_Spectra 25 https://appliedspectra.com/technology/libs.html 26 https://appliedspectra.com/technology/libs.html 27 https://appliedspectra.com/technology/libs.html 28 https://libs-info.com/understanding/11/ 29 https://www.ceric-eric.eu/lab-instrument/neutron-activation-analysis/ 30 https://nmi3.eu/neutron-research/techniques-for-/chemical-analysis.html 31 32 https://serc.carleton.edu/research_education/geochemsheets/techniques/INAA.html

33 https://archaeometry.missouri.edu/naa_technical.html