Radiocarbon Dating

Archeological Chemistry Seminar 2023 AAS/ARAS Training Program

Early History

- C-14 dating was developed by Willard Libby at the University of Chicago
 - Important collaborators:
 - James Richard Arnold Research Assistant
 - Ernest Carl Anderson Graduate Student
 - Research began in 1946 looking at the difference in abundance of C-14 in fossil and living organic material
 - Libby was aware of archeological implications and later professed his own avocational interest in archeology
 - Was awarded Nobel Prize in Chemistry (1960)

Willard Libby

How C-14 is made

- 99% of C-14 occurs through collisions of cosmic radiation with atmospheric gas
 - Cosmic radiation (H⁺, He⁺²) collisions create spallation products (including thermal neutrons)
 - Neutrons then collide with nitrogen atoms to produce radioactive C-14
 - Process primarily occurs 10-13 miles above Earth (stratosphere)

C-14 RADIOCARBON DATING

Production rate of ¹⁴C has ranged from 1.8 – 2.5 ¹⁴C atoms/cm²/s

Distribution of C-14

- Initial ¹⁴C atoms combine with oxygen to form carbon monoxide (¹⁴CO)
- Days later ¹⁴CO combines with another oxygen to form ¹⁴CO₂
- This process converts 95% within two weeks ${}^{14}C \rightarrow {}^{14}CO \rightarrow {}^{14}CO_2$
- Production rate depends only on
 - Cosmic radiation flux
 - Strength of Earth's magnetic field
- Production rate is 4x higher at geomagnetic poles than at equator
 - At poles, magnetic field dips toward the surface bringing cosmic radiation to lower altitudes

A few considerations for use in dating

- Terrestrial and marine plants incorporate ¹⁴CO₂ during photosynthesis
- Thus, it enters the food chain
- People and animals incorporate ¹⁴C through food and respiration
- Organisms have both input and output of ¹⁴C leading to a constant equilibrium concentration while the organism is alive
- Upon death, there is no more input
 - Remaining ¹⁴C will eventually decay back to ¹⁴N

 $^{14}C \rightarrow ^{14}N + B^- + v$

By-products are beta particle and neutrino

By counting remaining ¹⁴C in a sample, the time since death can be calculated

The math of radioactive decay

- All radioactive decay (including C-14) follows "1st order kinetics"
- 1st order decay equation (written three ways):
 - $[A]_{\dagger} = [A]_{0}e^{-kt}$

- $\square \ln[A]_{\dagger} = \ln[A]_{0} kt$
- $\square \ln \frac{[A]_t}{[A]_0} = -kt$
 - [A]₀ = initial amount of radiogenic substance (atoms, percentage, molarity, etc...)
 - [A]_t = amount of radiogenic substance remaining after some time has passed
 - k = rate constant for radiogenic decay
 - t = time passed since death
 - In (natural log) and e (exponential) are calculator functions

- The <u>rate</u> of radioactive decay depends on the isotope
- Some radiogenic isotopes decay very fast and others are very slow
 - Milliseconds to billions of years
 - Rate of decay depends on rate constant (k)
 - The rate of decay is often expressed with the half-life $(t_{1/2})$
 - Half-life is the amount of time it takes for the original amount to be cut in half
 - $\bullet t_{1/2} = \frac{\ln 2}{k}$
- For C-14, there are two quoted half-lives in the literature
 - Libby value: 5568 ± 30 years
 - Cambridge value: 5730 ± 40 years (modern accepted value)

C-14 Dating Notes

- To determine a C-14 age, the amount of C-14 remaining [A]_t must be measured in a laboratory
 - Beta counting

- Accelerated Mass Spectrometry (AMS)
- Some knowledge of the original amount of C-14 [A]₀ must be known
- Solve for time t in the first order kinetics formula
- Half-life t1/2 sets a limit to how old a sample can be dated
 - Generally, samples must be within 10 $t_{1/2}$ to be reliably dated
 - Thus, C-14 samples must be less than about 60,000 years
 - Samples older than 60,000 years do not have enough C-14 left to be reliable measured

Secular Variation Effects

Three types:

- Geophysical mechanisms controlling worldwide ¹⁴C production rate
- Distribution rate mechanisms of ¹⁴C
- Variability in carbon isotopes due to reservoir effects
- Biosphere carbon comes from atmospheric carbon
 - But there is a lag time between changes in atmospheric carbon and changes in biosphere carbon
 - Assuming a 10% sudden increase in the production of C-14 in the atmosphere
 - It would take the atmosphere 20,000 years to reach a new equilibrium value
 - Biosphere would take a bit longer to reach equilibrium for C-14
 - This complicates our estimate of [A]₀ and creates error
 - Age calculation could be off by hundreds of years

Calibrating Radiocarbon Ages

- Willard Libby initially used Egyptian artifacts of known ages and tree ring data to test for secular variation effects
 - He concluded there was good (± 10%) agreement between radiocarbon ages and known ages back to 4000 BP
 - Other researchers found notable discrepancies in radiocarbon vs. expected ages for older samples
- In the 1970s, California bristlecone pine trees were used to extend the radiocarbon calibration back to 7000 BP
 - The results show ever increasing divergence when dating the oldest tree ring layers

Radiocarbon Age vs Tree Ring Age

Significant Age Variations over Shorter Time Scales

Cambridge Calibration Scale

Calibration Databases

- Since the 1980s, there have been several C-14 calibration databases created
 - Use different statistical models and geographic data
 - Published in the journal Radiocarbon
 - In chronological order:
 - Calibration Issue (1986)
 - Calibration 1993
 - IntCal98: Calibration Issue
 - 14C Varve/Comparison Issue
 - IntCal04
 - IntCal09
 - IntCal 13
 - IntCal20

Differences between IntCal13 (top) and IntCal20 (bottom)

Computer Programs for Calibration

- Computer programs take the current calibration models and apply it to specific samples of interest
- These programs include:
 - Calib

- OxCal
- CAL
- CalibETH
- CALPal

Anomalies affecting C-14 abundance in the atmosphere

- De Vries Effects Secular variations (wiggles) caused by changes in solar heliophysics
- Suess Effect Burning of fossil fuels is adding abundant ¹⁴C-free carbon to the atmosphere
- Libby Effect Atomic bomb testing has added significant ¹⁴C to the atmosphere
 - Mixing rates of ¹⁴C between stratosphere and troposphere is less than 5 years for 95% of ¹⁴C
- When radiocarbon ages are less than 200 years, samples are simply reported as "modern"

C-14 in the atmosphere due to atomic bomb testing

Ways to measure C-14 (or any [A]₀)

- Beta Counting
 - Every decay of ¹⁴C to ¹⁴N releases a beta particle
 - Young samples have more ¹⁴C and thus more decays/minute
 - Used by Libby (gas proportional counting and liquid scintillation)
 - Requires destruction of 5-20 g
 - Measurement time days to months
- Accelerator Mass Spectrometry (AMS)
 - Uses mass spec to separate carbon isotopes by mass
 - Counts ${}^{14}C$ atoms and ratios it to ${}^{12}C$ (i.e. ${}^{14}C/{}^{12}C$)
 - Requires 3-100 mg of sample
 - Measurement time 15 minutes

Sample Pretreatment before AMS

- The goal of pretreatment is to remove carbon containing contaminants
- Most samples are treated with the following steps
 - Physical examination removal of rootlets and other non-sample debris
 - Acid extraction treated with hydrochloric acids to remove carbonate compounds
 - Base extraction treated with sodium hydroxide to dissolve humic and fulvic acids, followed by repeated rinsing with water. Humic acid component is sometimes tested to see if it has a ¹⁴C activity different from sample.
 - Solvent extraction non-sample organics are removed by treatment with methanol, toluene, ether, etc...
- Samples are then burned to convert material into carbon dioxide and nitrogen gas for stable isotopes
- ¹⁴C is determined by converting carbon dioxide into graphite

Mean lifetime of ¹⁴C and Conventional Radiocarbon Age

- Use 1st order decay equation
- Also requires the "mean" lifetime T of a ¹⁴C radionuclide
 - Recall the half-life is 5568 years (Conventional radiocarbon ages use the Libby value)
 - But, half of the ¹⁴C will last much longer
 - Can be calculated from the decay constant k, $t_{1/2} = \ln 2/k$
 - Thus, $k = \frac{\ln 2}{t_{1/2}} = \frac{0.69315}{5568} = 1.2449x10^{-4}yr$
 - Mean lifetime of ${}^{14}C = 1/k = 8033$ years
- Inserting into 1st order equation gives:

t (years) = $8033*\ln(A_0/A)$ (conventional age)

Determining Conventional ¹⁴C Ages

First, a modern standard sample for carbon must be used

- NBS oxalic acid (OXI) used as instrumental standard sample
- Has "percent modern carbon" (pMC) where 100 pMC = 0 BP = AD 1950
- Next, ¹⁴C result must be converted to per mil $d^{14}C = [(A/A_0)-1]*1000$

Then, d¹⁴C must be normalized onto a common d¹³C scale

$$\mathsf{D}^{14}\mathsf{C}(\%) = d^{14}\mathcal{C} - 2(\delta^{13}\mathcal{C} + 25)\left(1 + \frac{d^{14}\mathcal{C}}{1000}\right)$$

Finally, radiocarbon age is calculated by:

$$t (years) = 8033 \ln \frac{1}{1 + D^{14}C/1000}$$

Please note: Here we have not applied any statistical error analysis

Calibrated Date (cal BC)

OxCal v4.1.7 Bronk Ramsey (2010); r.5; Atmospheric data from Reimer et al (200

Radiocarbon determination (BP)

Radiocarbon Age and Calendar Age - I

- Conventional radiocarbon age should be reported as radiocarbon years before present and to a 1 sigma σ precision
 - Example: 3560 ± 30 RCYBP (1σ)
- δ^{13} C values should also be reported
 - Used to calculate conventional age and can be used for diet studies
- Calendar ages should be reported as AD/BC with "cal" included
 - 1 or 2 sigma precision is also included
 - Example: Cal AD 1160 to 1280 (2σ)
- Calibrated dates cannot be recalibrated
 - Conventional dates can be recalibrated in the future with new calibration curves

Radiocarbon Age and Calendar Age - II

- Measured Age raw age measured by the lab using AMS or other techniques
- Conventional Age measured age adjusted for isotopic fractionation
 - Prior to the late 1970s, reported ages were rarely corrected for isotopic fractionation
- Calibrated Age conventional age corrected with tree-ring or varve calibration curves for ¹⁴C variations over time
 - Sometimes called "radiocarbon date"

Image References

page

https://en.wikipedia.org/wiki/Willard_Libby https://www.dreamstime.com/radiocarbon-dating-image252683532 https://biologydictionary.net/carbon-cycle-reservoirs/ https://www.radiocarbon.com/carbon-dating-history/ https://www.researchgate.net/figure/Radiocarbon-calibration-curve-the-straight-line-shows-what-a-perfect-relationship_fig2_255483709 https://www.cambridge.org/core/journals/radiocarbon/article/evolution-of-radiocarbon-calibration/47E0C56603AEAD861D7A8ABCAE3BCD27 https://en.wikipedia.org/wiki/Radiocarbon_calibration https://ingeniumcanada.org/channel/in novation/how-accelerator-mass-https://www.orau.org/health-physics-museum/collection/proportional-counters/early-commercial-gas-flow.html spectrometer-works https://www.quora.com/Is-Radiocarbon-dating-test-precise-If-no-how-much-is-the-error-tolerance-Exactly-What-are-the-https://c14.arch.ox.ac.uk/explanation.php steps-of-this-process