Stable Isotope Analysis

Archeological Chemistry Seminar 2023 AAS/ARAS Training Program

Stable Isotopes - I

- Isotopes are different distinct nuclear species of a given element
- All isotopes of an element have the same number of protons, but will have different numbers of neutrons in the nucleus.
 - Example: C-12, C-13, and C-14

	Carbon-12	Carbon-13	Carbon-14
	Stable	Stable	Radioactive
Proton	6	6	6
Neutron	6	7	8
Abundance	98.93%	I.07%	trace

Stable Isotopes - II

- Nearly all elements have both stable and radioactive isotopes
- All isotopes of an element have similar chemical properties
 - Chemical reactions: Involve only electrons in the electron "cloud"
 - Nuclear reactions: Changes occur in nucleus (i.e. proton or neutron number may change)
- Most common stable isotopes used in archeology:
 - C-13, N-15, O-17&18, Sr-87, and Pb

Mass Spectrometry

- Determining isotope abundance requires highly sensitive equipment to measure mass/charge (m/z) ratios
- Can be used to measure masses of atoms or molecules
 - Separates components based on differing atomic or molecular masses
- Typically, a sample (solid, liquid, or gas) is ionized by a beam of electrons
 - Lasers can also be used for ionization, often called "laser ablation"
- Ions are then directed down a long curved tube using magnetic fields
 - lons with different m/z ratios will strike a detector in different places
 - Or, the time-of-flight is measured. Ions with large m/z ratios travel slower and are separated from other ions with differing m/z ratios.
- Often paired with other instrumental techniques: ICP-MS, GC-MS

Ion deflection and typical output

ICP-MS Spectrum of Wood showing multiple lead isotopes

8

Mass Spec details

- Typically, electron beam ionizes samples in the gas phase
 - Called electron impact (EI) ionization
- All ions leaving the electron beam have the same kinetic energy: E = eV = 1/2mv²
- But ions travel at different velocities due to differing mass: v = (2eV/m)^{0.5}
- Radius of ion curvature: $r = 1.414(V*m/e)^{0.5}/B$
- For time-of-flight (TOF) mass analyzers:
 - $t = \frac{d}{\sqrt{2V}} \sqrt{\frac{m}{e}}$

determines time ion spends in

drift tube

What do stable isotopes tell us?

Stable isotope studies fall into two groups:

Dietary isotopes: C-13, N-15

9

Mobility isotopes: Sr-87, O-18, Pb-204

Dietary Isotope: C-13

- Carbon has three isotopes:
 - C-12 (98.90%) stable
 - C-13 (1.10%) stable
 - C-14 (trace) radioactive
- Because of the mass differences, carbon isotopes fractionate as they move through biological systems
 - Thus, an organism's leaves, stems, bones, blood, tissue, etc... will have a different isotopic composition than the local environment
- Because fractionation of isotopes is small, differences are usually reported as a delta per mil (‰) notation.

$$\delta^{13}C = \begin{bmatrix} \frac{{}^{13}C_{sample}}{{}^{12}C_{sample}} \\ \frac{{}^{13}C_{standard}}}{{}^{13}C_{standard}} - 1 \end{bmatrix} \times 1000 \%$$

Carbon biological pathways

- Majority of Earth's surface carbon is dissolved as carbon dioxide in the oceans
- Carbon dioxide released to atmosphere is isotopically lighter by 7 ‰
- Carbon dioxide enters plants through photosynthesis pathways
 - C₃ plants (most edible plants)
 - C₄ plants (includes corn)

- CAM plants (usually found in arid environments, such as succulents)
- Fractionation of isotopes continue inside browsing herbivores
- Bone collagen δC is indicative of the trophic level and type of plant/herbivore consumption

Dietary Isotope: N-15

- Nitrogen has two isotopes:
 - N-14 (99.63%) stable
 - ► N-15 (0.37%) stable
- Because of the mass differences, nitrogen isotopes also fractionate as they
 move through biological systems and trophic levels
- Fractionation in plants occurs via bacterial fixation or through soil nitrates
 - Plant fractionation is <4 ‰ relative to atmospheric nitrogen</p>
- Each trophic level enriches $\delta^{15}N$ by 3 ‰
- Because fractionation of isotopes is small, differences are usually reported as a delta per mil (‰) notation.

$$\delta^{15}N = \left[\frac{\frac{1^{5}N_{sample}}{1^{4}N_{sample}}}{\frac{1^{5}N_{standard}}{1^{4}N_{standard}}} - 1\right] \times 1000 \%$$

Crenshaw Site (3MI6)

- Fourche Maline through Middle Caddo period (A.D. 700-1400)
- Excavated by Frank Schambach in 1960s and 1980s
- Southern portion of site contains "skull and mandible cemetery"
 - 33 buried clusters containing piles of skulls or mandibles
 - In total, 127 human skulls and 235 detached mandibles
 - Cemetery dates to A.D. 1250-1350
 - No grave goods
- Two possible explanations:
 - Regional deceased residents brought to the ceremonial Crenshaw site at certain times of the year
 - Skulls and mandibles represent "trophies" collected during raids on enemies

Skull and mandible clusters in the West Skull Area

Summary of location areas for human teeth chosen for isotope analysis.

Catalog #	Location	Location Description	No. of samples submitted
			for isotope analysis
83-377-2	WSA Cluster 1	7 skulls, 1 mandible	5
83-377-6	WSA Cluster 5	5 skulls	5
83-377-32	WSA Cluster 18	10 skulls	9
83-377-61	WSA Cluster 25	3 skulls	3
83-377-3	WSA Cluster 2	108 mandibles	20
83-377-23	WSA Cluster 15	36-37 mandibles	8
83-377-41	NSA Cluster 8	10 skulls	9
62-40	Mound C	Raymond Wood excavated. burials	7
83-376	Mound F	Harrison excavated burials	7
69-66-589	Southwest of Md. D	8 skulls, Rayburn cluster	6
69-66-490	Feature 8a, Antler temple	1 mandible in pit with animal bone	1

Human Teeth

Human Teeth Data Interpreted DG = Diet Groups

Akridge Diet Interpretations

Diet Group	Samples Represented	Location(s) Represented	Diet Description	Interpretation
1	87, 88, 89, 90, 91*, 92, 93	Mound F	No C ₄ with varying meat consumption	No C4 or bison
2	21, 25, 41	WSA Cluster 1; WSA Cluster 25	No C4 with similar meat consumption	No C4 or bison
3	24, 28, 31, 34, 35, 37, 38, 71*, 82, 86, 96*	WSA Cluster 1; WSA Cluster 5; WSA Cluster 18; NSA Cluster 8; Rayburn Skulls; Mound C	Minor to moderate C ₄ consumption	C4 consumption; no bison
4	73, 77, 78, 79, 94, 97*, 98*, 99*	NSA Cluster 8; Rayburn Skulls	Moderate C4 consumption	C4 and bison consumption
	54	WSA Cluster 2	Moderate C ₄ consumption	C4 consumption
	100	Feature 8a, Antler Temple	Minor C ₄ consumption with increased meat/fish consumption	C4 with high meat consumption

Mobility Isotope: Sr-87

- Strontium isotopes are not fractionated in biological systems
- Thus, all trophic levels reflect local soil Sr composition
- Only one Sr stable isotope is derived from radiogenic source: ${}^{87}\text{Rb} \rightarrow {}^{87}\text{Sr} + B \qquad \qquad \text{Half-life} = 48.8 \text{ billion years}$
- Leads to a very slow build-up of ⁸⁷Sr in rocks and soils
- Usually, measured as $\frac{^{87}Sr}{^{86}Sr}$
- Older rocks/soil generally have higher $\frac{{}^{87}Sr}{{}^{86}Sr}$ ratios
- Mobility of people can be indicated by Sr ratios different from local environment

Crenshaw

Crenshaw

Mobility Isotopes: Lead (Pb)

- Pb isotopes are not fractionated in biological systems
- Concept is similar to Sr isotopes
- Pb has four stable isotopes, so more ways to analyze data
 - Pb-204 non-radiogenic
 - Pb-206 radiogenic
 - Pb-207 radiogenic
 - Pb-208 radiogenic
- Thus, only Pb-204 does not increase over time

Mobility Isotopes: Oxygen (O)

Concept is similar to Sr isotopes

- O has three stable isotopes
 - O-16
 99.755% natural abundance
 - O-17
 0.039% natural abundance
 - O-18
 0.206% natural abundance

Measured as:
$$\delta^{18}O = \begin{bmatrix} \frac{{}^{18}O_{sample}}{{}^{16}O_{sample}} \\ \frac{{}^{18}O_{standard}}}{{}^{16}O_{standard}} - 1 \end{bmatrix}$$

- Skeletal tissue ratio determined by
 - Local fresh water ratio
 - Oxygen ratios in food

Oxygen-18 fractionations

31

Image References

page #									
2	https://www.pinterest.co.uk/pin/405886985142270151/								
3									
4	Investigation of the performances of an ECR charge breeder at ISOLDE: a study of the 1+ n+ scenario for the next generation ISOL facilities - Scientific Figure on ResearchGate. Available from: https://www.re								
5	By Jeff Dahl - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7870670								
6	https://microbenotes.com/mass-spectrometry-ms-principle-working-instrumentation-steps-applicati								
7	https://www.researchgate.net/figure/Spectrum-of-elements-measured-by-ICP-MS-axis-counts-per-se	econd-against-mass_fig5_283816314	https://serc.carleton.edu/msu_nar						
8									
9	https://isobarscience.com/tracing-diets-sr-isotopes/								
_ 10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25									
26									
27									
28									
29	https://serc.carleton.edu/microbelife/research_methods/environ_sampling/stableisotopes.html								
30	https://www.researchgate.net/figure/The-predicted-average-oxygen-and-hydrogen-isotope-ratios-of	https://www.semanticscholar.org/							
31									
32									
33									
34									
35									